Graphe parfaitEn théorie des graphes, le graphe parfait est une notion introduite par Claude Berge en 1960. Il s'agit d'un graphe pour lequel le nombre chromatique de chaque sous-graphe induit et la taille de la plus grande clique dudit sous-graphe induit sont égaux. Un graphe est 1-parfait si son nombre chromatique (noté ) est égal à la taille de sa plus grande clique (notée ) : . Dans ce cas, est parfait si et seulement si tous les sous graphes de sont 1-parfait.
ParaboloïdeEn mathématiques, un paraboloïde est une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de centre de symétrie. Certaines sections d'un paraboloïde avec un plan sont des paraboles. D'autres sont, selon le cas, des ellipses ou des hyperboles. On distingue donc les paraboloïdes elliptiques et les paraboloïdes hyperboliques. Cette surface peut s'obtenir en faisant glisser une parabole sur une autre parabole tournant sa concavité dans la même direction.
Plan projectifEn mathématiques, la notion de plan projectif a deux sens distincts, suivant que l'approche est algébrique ou par les axiomes d'incidence entre pointe et droites, l'approche axiomatique donnant une notion qui s'avère un peu plus générale que l'approche algébrique. Un plan projectif en géométrie algébrique est une variété particulière : l'espace projectif de dimension 2. On peut associer un plan projectif à tout corps commutatif (corps des réels, corps des complexes, corps finis) ou non commutatif (quaternions.
AntimatroidIn mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included.
MatroïdeEn mathématiques, et plus particulièrement en combinatoire, un matroïde est une structure introduite comme un cadre général pour le concept d'indépendance linéaire. Elle est donc naturellement liée à l'algèbre linéaire (déjà au niveau du vocabulaire : indépendant, base, rang), mais aussi à la théorie des graphes (circuit, cycle), à l'algorithmique (algorithme glouton), et à la géométrie (pour diverses questions liées à la représentation). La notion a été introduite en 1935 par Whitney. Le mot matroïde provient du mot matrice.
Quotient de RayleighEn mathématiques, pour une matrice hermitienne A et un vecteur x non nul, le quotient de Rayleigh est l’expression scalaire définie par où x désigne le vecteur adjoint de x. Pour une matrice symétrique à coefficients réels, le vecteur x est simplement son transposé x. Dans les deux cas, le quotient de Rayleigh fournit une valeur réelle qui renseigne sur le spectre de la matrice par les deux propriétés fondamentales suivantes : il atteint un point critique (extremum ou point-selle) au voisinage des vecteurs propres de la matrice ; appliqué à un vecteur propre, le quotient de Rayleigh fournit la valeur propre correspondante.
Action-angle coordinatesIn classical mechanics, action-angle variables are a set of canonical coordinates that are useful in characterizing the nature of commuting flows in integrable systems when the conserved energy level set is compact, and the commuting flows are complete. Action-angle variables are also important in obtaining the frequencies of oscillatory or rotational motion without solving the equations of motion. They only exist, providing a key characterization of the dynamics, when the system is completely integrable, i.