Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Intersection number (graph theory)In the mathematical field of graph theory, the intersection number of a graph is the smallest number of elements in a representation of as an intersection graph of finite sets. In such a representation, each vertex is represented as a set, and two vertices are connected by an edge whenever their sets have a common element. Equivalently, the intersection number is the smallest number of cliques needed to cover all of the edges of .
Polynôme chromatiqueEn mathématiques, plus particulièrement en théorie des graphes, le polynôme chromatique d'un graphe est une fonction polynômiale donnant le nombre de colorations distinctes d'un graphe, en fonction du nombre de couleurs autorisées. Il a été introduit d'abord en 1912 pour les graphes planaires, par George David Birkhoff, qui cherchait à démontrer le théorème des quatre couleurs. Ce polynôme a pour racines tous les entiers positifs ou nuls strictement inférieurs au nombre chromatique du graphe et a pour degré l'ordre du graphe.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Graphe d'intervalles propreUn graphe d'intervalles propre est un graphe d'intervalles possédant une représentation d'intervalles dans laquelle aucun intervalle n'est inclus dans l'autre. Un graphe d'intervalles propre est nécessairement un graphe sans griffe. Soit un graphe possédant une griffe comme sous-graphe induit. On appelle les quatre sommets de la griffe d'intervalles respectives ,, et tels que le sommet soit celui relié aux trois autres et que . Comme la griffe est un graphe induit, , et ne sont pas voisins dans . On a donc .
Graphe cordalthumb|Un cycle, en noir, avec deux cordes, en vert. Si l'on s'en tient à cette partie, le graphe est cordal. Supprimer l'une des arêtes vertes rendrait le graphe non cordal. En effet, l'autre arête verte formerait, avec les trois arêtes noires, un cycle de longueur 4 sans corde. En théorie des graphes, on dit qu'un graphe est cordal si chacun de ses cycles de quatre sommets ou plus possède une corde, c'est-à-dire une arête reliant deux sommets non adjacents du cycle.
Graphe d'intersectionEn théorie des graphes, un graphe d'intersection est un graphe représentant les intersections d'une famille d'ensembles. Plus précisément, pour une famille d'ensembles finie donnée, on associe à chaque ensemble un sommet, et deux sommets sont reliés par une arête si les ensembles ont une intersection non nulle. Beaucoup de familles de graphe sont définies par l'intersection d'ensembles géométriques, par exemple des sphères dans le plan, ou des intervalles sur une droite.
Nombre de Hadwigervignette|upright=1.4|Un graphe avec quatre sous-graphes connectés qui, lorsqu'ils sont contractés, forment un graphe complet. Il ne possède pas de mineur complet à cinq sommets par le théorème de Wagner, donc son nombre de Hadwiger est exactement quatre. En théorie des graphes, le nombre de Hadwiger d'un graphe non orienté G est la taille du plus grand graphe complet qui peut être obtenu en contractant des arêtes de G. De manière équivalente, le nombre de Hadwiger h(G) est le plus grand entier k pour lequel le graphe complet K k est un mineur de G.
Grundy numberIn graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible. Grundy numbers are named after P. M. Grundy, who studied an analogous concept for directed graphs in 1939. The undirected version was introduced by .
Claw-free graphIn graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph K1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.