Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Deciding consistency of constraint networks is a fundamental problem in qualitative spatial and temporal reasoning. In this paper we introduce a divide-and-conquer method that recursively partitions a given problem into smaller sub-problems in deciding consistency. We identify a key theoretical property of a qualitative calculus that ensures the soundness and completeness of this method, and show that it is satisfied by the Interval Algebra (IA) and the Point Algebra (PA). We develop a new encoding scheme for IA networks based on a combination of our divide-and-conquer method with an existing encoding of IA networks into SAT. We empirically show that our new encoding scheme scales to much larger problems and exhibits a consistent and significant improvement in efficiency over state-of-the-art solvers on the most difficult instances.