Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Entropie (thermodynamique)L'entropie est une grandeur physique qui caractérise le degré de désorganisation d'un système. Introduite en 1865 par Rudolf Clausius, elle est nommée à partir du grec , littéralement « action de se retourner » pris au sens de « action de se transformer ». En thermodynamique, l'entropie est une fonction d'état extensive (c'est-à-dire, proportionnelle à la quantité de matière dans le système considéré). Elle est généralement notée , et dans le Système international d'unités elle s'exprime en joules par kelvin ().
Entropie croiséeEn théorie de l'information, l'entropie croisée entre deux lois de probabilité mesure le nombre de bits moyen nécessaires pour identifier un événement issu de l'« ensemble des événements » - encore appelé tribu en mathématiques - sur l'univers , si la distribution des événements est basée sur une loi de probabilité , relativement à une distribution de référence . L'entropie croisée pour deux distributions et sur le même espace probabilisé est définie de la façon suivante : où est l'entropie de , et est la divergence de Kullback-Leibler entre et .
Entropy (statistical thermodynamics)The concept entropy was first developed by German physicist Rudolf Clausius in the mid-nineteenth century as a thermodynamic property that predicts that certain spontaneous processes are irreversible or impossible. In statistical mechanics, entropy is formulated as a statistical property using probability theory. The statistical entropy perspective was introduced in 1870 by Austrian physicist Ludwig Boltzmann, who established a new field of physics that provided the descriptive linkage between the macroscopic observation of nature and the microscopic view based on the rigorous treatment of large ensembles of microstates that constitute thermodynamic systems.
Odonymievignette|droite|upright|Au parc Monceau, à Paris. vignette|droite|upright|Plaque d’Abbey Road à Londres, Royaume-Uni. vignette|droite|upright|À Liège (Belgique) : parfois une certaine ironie... vignette|droite|upright|Et même toujours à Liège... vignette|droite|upright|Plaque de la rue Adam-Mickiewicz à Beykoz, İstanbul, Turquie. La partie rouge indique le nom de la rue, la partie blanche le quartier et la partie inférieure le district. L’odonymie est l'étude des odonymes, parfois aussi écrits hodonymes, noms propres désignant une voie de communication.
Entropy in thermodynamics and information theoryThe mathematical expressions for thermodynamic entropy in the statistical thermodynamics formulation established by Ludwig Boltzmann and J. Willard Gibbs in the 1870s are similar to the information entropy by Claude Shannon and Ralph Hartley, developed in the 1940s. The defining expression for entropy in the theory of statistical mechanics established by Ludwig Boltzmann and J. Willard Gibbs in the 1870s, is of the form: where is the probability of the microstate i taken from an equilibrium ensemble, and is the Boltzmann's constant.
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Théorème de GibbsLe théorème de Gibbs permet de calculer l'entropie d'un mélange de gaz parfaits. Il s'énonce ainsi : L'entropie d'un mélange idéal de gaz parfaits est égale à la somme des entropies de ses constituants supposés séparés, à la température du mélange, et sous des pressions égales aux pressions partielles qu'ils exercent dans le mélange. Le théorème de Gibbs montre qu'un mélange de gaz parfaits est une solution idéale.
Structural engineerStructural engineers analyze, design, plan, and research structural components and structural systems to achieve design goals and ensure the safety and comfort of users or occupants. Their work takes account mainly of safety, technical, economic, and environmental concerns, but they may also consider aesthetic and social factors. Structural engineering is usually considered a specialty discipline within civil engineering, but it can also be studied in its own right.
Entropy and lifeResearch concerning the relationship between the thermodynamic quantity entropy and both the origin and evolution of life began around the turn of the 20th century. In 1910, American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy. The 1944 book What is Life? by Nobel-laureate physicist Erwin Schrödinger stimulated further research in the field.