Random cluster modelIn statistical mechanics, probability theory, graph theory, etc. the random cluster model is a random graph that generalizes and unifies the Ising model, Potts model, and percolation model. It is used to study random combinatorial structures, electrical networks, etc. It is also referred to as the RC model or sometimes the FK representation after its founders Cees Fortuin and Piet Kasteleyn. Let be a graph, and be a bond configuration on the graph that maps each edge to a value of either 0 or 1.
Universality classIn statistical mechanics, a universality class is a collection of mathematical models which share a single scale invariant limit under the process of renormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents will be the same for all models in the class.
Continuum limitIn mathematical physics and mathematics, the continuum limit or scaling limit of a lattice model refers to its behaviour in the limit as the lattice spacing goes to zero. It is often useful to use lattice models to approximate real-world processes, such as Brownian motion. Indeed, according to Donsker's theorem, the discrete random walk would, in the scaling limit, approach the true Brownian motion. The term continuum limit mostly finds use in the physical sciences, often in reference to models of aspects of quantum physics, while the term scaling limit is more common in mathematical use.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Théorie de LiouvilleIn physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge of its Virasoro symmetry algebra, but it is unitary only if and its classical limit is Although it is an interacting theory with a continuous spectrum, Liouville theory has been solved. In particular, its three-point function on the sphere has been determined analytically.
Corrélation électroniqueDans les calculs quantique de structure électronique, le terme de corrélation électronique décrit une part de l'énergie d'interaction entre électrons lié à leur influence mutuelle. Ce terme d’interaction représente la différence entre une solution Hartree Fock (sur une base de déterminants de Slater, antisymétrisée vis-à-vis de l'échange de 2 électrons) et la solution exacte du problème (voir figure ci-dessous). Dans la méthode de Hartree-Fock en chimie quantique, la fonction d'onde antisymétrique est approximée par un seul déterminant de Slater.
Article de revueUn article de revue (ou « article de synthèse » ou « article de revue de littérature ») est un type particulier d'article publié dans une revue scientifique dont le principe est de dresser un état des lieux dans un domaine particulier de la recherche et de dégager les directions particulières prises dans ce domaine. Le contenu principal d'un article de revue est une revue de littérature (ou revue de la littérature), c'est-à-dire une méthode de recherche d'information scientifique structurée, réplicable et ciblée sur un sujet de recherche spécifique.
Philosophie des mathématiquesLa philosophie des mathématiques est la branche de la philosophie des sciences qui tente de répondre aux interrogations sur les fondements des mathématiques ainsi que sur leur usage. On y croise des questions telles que : « les mathématiques sont-elles nécessaires ? », « pourquoi les mathématiques sont-elles utiles ou efficaces pour décrire la nature ? », « dans quel(s) sens, peut-on dire que les entités mathématiques existent ? » ou « pourquoi et comment peut-on dire qu'une proposition mathématique est vraie ? ».
Revue systématiquethumb|Ce diagramme illustre ce que font les auteurs d'une revue systématique. Une revue systématique est un travail de collecte, d'évaluation critique et de synthèse des connaissances existantes sur une question donnée. Cette question bien définie est issue de l'étude d'une problématique posée par un commanditaire, un gestionnaire, un praticien, un chercheur... Il s'agit, contrairement à une revue narrative et non systématique de la littérature, de minimiser les biais pouvant être inhérents soit à la matière première (données, connaissances) soit à la conduite de la revue elle-même, afin d'atteindre la plus grande objectivité possible.