Finite topological spaceIn mathematics, a finite topological space is a topological space for which the underlying point set is finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions". Let be a finite set.
Point d'accumulation (mathématiques)En mathématiques, un point d'accumulation d'une partie A d'un espace topologique E est un point x de E qui peut être « approché » par des points de A au sens où chaque voisinage de x – pour la topologie de E – contient un point de A distinct de x. Un tel point x n'est pas nécessairement un point de A. Ce concept généralise la notion de limite, et permet de définir des notions comme les espaces fermés et l'adhérence. De fait, pour qu'un espace soit fermé, il faut et il suffit qu'il contienne tous ses points d'accumulation.
Notation de Conway des polyèdresLa notation de Conway des polyèdres est une notation des polyèdres développée par le mathématicien John Horton Conway. Elle est utilisée pour décrire des polyèdres à partir d'un polyèdre « mère » modifié par diverses opérations. Les polyèdres mères sont les solides de Platon. John Conway a généralisé l'utilisation d'opérateurs, tels la définie par Kepler, afin de générer d'une mère des polyèdres de même symétrie. Ses opérateurs peuvent générer des mères tous les solides d'Archimède et de Catalan.
Triangulation (topology)In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.
DodécaèdreEn géométrie, un dodécaèdre est un polyèdre à douze faces. Puisque chaque face a au moins trois côtés et que chaque arête borde deux faces, un dodécaèdre a au moins 18 arêtes. Certains ont des propriétés particulières comme des faces régulières ou des symétries : le dodécaèdre régulier, seul solide de Platon à faces pentagonales régulières ; le grand dodécaèdre, le petit dodécaèdre étoilé et le grand dodécaèdre étoilé, trois solides de Kepler-Poinsot ; le dodécaèdre rhombique (de première espèce) et le dodécaèdre rhombique de seconde espèce (ou dodécaèdre de Bilinski) dont les faces, toutes identiques, sont des losanges (rhombes).
Family of setsIn set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. A family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of .
Point (géométrie)thumb|Points dans un plan euclidien. En géométrie, un point est le plus petit élément constitutif de l'espace géométrique, c'est-à-dire un lieu au sein duquel on ne peut distinguer aucun autre lieu que lui-même. géométrie euclidienne Le point, selon Euclide, est . On peut aussi dire plus simplement qu'un point ne désigne pas un objet mais un emplacement. Il n'a donc aucune dimension, longueur, largeur, épaisseur, volume ou aire. Sa seule caractéristique est sa position. On dit parfois qu'il est « infiniment petit ».
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
Problème SATvignette|Une instance du Sudoku peut être transformée en une formule de logique propositionnelle à satisfaire. Une assignation des variables propositionnelles donne une grille complétée. En informatique théorique, le problème SAT ou problème de satisfaisabilité booléenne est le problème de décision, qui, étant donné une formule de logique propositionnelle, détermine s'il existe une assignation des variables propositionnelles qui rend la formule vraie. Ce problème est important en théorie de la complexité.
Couple (mathématiques)En mathématiques, un couple de deux objets est la donnée de ces deux objets dans un ordre déterminé. Le couple des deux objets et est noté . Si et sont distincts, le couple est distinct du couple ; en cela, la notion de couple se distingue de la notion de paire où l'ordre des éléments est indifférent. Pour désigner un couple, les anglophones emploient d'ailleurs ordered pair, c’est-à-dire paire ordonnée. Les objets a et b sont appelés respectivement première composante et deuxième composante du couple (a, b).