Deuxième principe de la thermodynamiqueLe deuxième principe de la thermodynamique (également connu sous le nom de deuxième loi de la thermodynamique ou principe de Carnot) établit l'irréversibilité des phénomènes physiques, en particulier lors des échanges thermiques. C'est un principe d'évolution qui fut énoncé pour la première fois par Sadi Carnot en 1824. Il a depuis fait l'objet de nombreuses généralisations et formulations successives par Clapeyron (1834), Clausius (1850), Lord Kelvin, Ludwig Boltzmann en 1873 et Max Planck (voir Histoire de la thermodynamique et de la mécanique statistique), tout au long du et au-delà jusqu'à nos jours.
Premier principe de la thermodynamiqueSelon le premier principe de la thermodynamique, lors de toute transformation, il y a conservation de l'énergie. Dans le cas des systèmes thermodynamiques fermés, il s'énonce de la manière suivante : Au cours d'une transformation quelconque d'un système fermé, la variation de son énergie est égale à la quantité d'énergie échangée avec le milieu extérieur, par transfert thermique (chaleur) et transfert mécanique (travail).
Enthalpie libreL’enthalpie libre, appelée aussi énergie libre de Gibbs ou simplement énergie de Gibbs, est une fonction d'état extensive introduite par Willard Gibbs, et généralement notée G. Le changement d'enthalpie libre correspond au travail maximal qui peut être extrait d'un système fermé à température et pression fixes, hors le travail dû à la variation de volume. L'enthalpie libre est reliée à l'enthalpie par la formule (où désigne la température et l'entropie), à l'énergie libre par la relation (où désigne la pression et le volume) et à l'énergie interne par la relation .
Limite thermodynamiqueEn physique statistique, la limite thermodynamique est la limite mathématique conjointe où : le nombre de particules du système considéré tend vers l'infini ; le volume du système considéré tend vers l'infini ; la densité de particules du système considéré reste constante. Dans le problème thermodynamique de la réunion de systèmes disjoints, on peut aussi voir la limite thermodynamique comme étant le passage d'effets de surface prépondérants à des effets de volume prépondérants.
Diagramme thermodynamiqueUn diagramme thermodynamique est une représentation graphique utilisée dans différents domaines pour pointer les valeurs de diverses grandeurs caractérisant l'état d'un fluide : pression (p), pression partielle des composantes, température (T), volume spécifique (v), enthalpie (h), entropie (s). L'intérêt de ces diagrammes est qu'ils permettent de tracer approximativement l'évolution de ces variables dans des fluides lors d'un travail au lieu de devoir la calculer par les équations de la thermodynamique.
Énergie libreEn thermodynamique, l'énergie libre, appelée aussi énergie libre de Helmholtz ou simplement énergie de Helmholtz, est une fonction d'état extensive dont la variation permet d'obtenir le travail utile susceptible d'être fourni par un système thermodynamique fermé, à température constante, au cours d'une transformation réversible. En français on la représente généralement par ; en anglais on l'appelle énergie libre de Helmholtz et on la représente généralement par .
AdsorptionEn chimie, l’adsorption est un phénomène de surface par lequel des atomes, des ions ou des molécules - des adsorbats - se fixent sur une surface solide - l'adsorbant - depuis une phase gazeuse, liquide ou une solution solide. Dans le cas d'un atome adsorbé, on parle d'adatome. Ce phénomène est différent de l'absorption, par lequel un fluide ou le composant d'une solution solide rentre dans le volume d'une autre phase liquide ou solide, mais les deux effets sont similaires et sont facilement (et à tort) confondus, notamment dans des applications pour le grand public.
Thermodynamic stateIn thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables. Once such a set of values of thermodynamic variables has been specified for a system, the values of all thermodynamic properties of the system are uniquely determined. Usually, by default, a thermodynamic state is taken to be one of thermodynamic equilibrium.
Processus thermodynamiqueUn processus thermodynamique, ou une transformation thermodynamique, est une transformation (ou une série de transformations) chimique ou physique d’un système partant d’un état d’équilibre initial pour aboutir à un état d’équilibre final.
Thermodynamic databases for pure substancesThermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa (1 atm), or 100 kPa (1 bar). Both of these definitions for the standard condition for pressure are in use.