TraînéeEn mécanique des fluides, la traînée ou trainée est la force qui s'oppose au mouvement d'un corps dans un liquide ou un gaz et agit comme un frottement. Mathématiquement, c'est la composante des efforts exercés sur le corps, dans le sens opposé à la vélocité relative du corps par rapport au fluide. En aérodynamique, c'est, avec la portance, l'une des deux grandeurs fondamentales. Le rapport entre portance et traînée s'appelle la finesse.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Costate equationThe costate equation is related to the state equation used in optimal control. It is also referred to as auxiliary, adjoint, influence, or multiplier equation. It is stated as a vector of first order differential equations where the right-hand side is the vector of partial derivatives of the negative of the Hamiltonian with respect to the state variables. The costate variables can be interpreted as Lagrange multipliers associated with the state equations.
AdimensionnementL'adimensionnement (parfois appelé aussi dédimensionnement) est la suppression partielle ou totale des unités d'une équation par une substitution appropriée de variables, dans le but de simplifier la représentation paramétrique de problèmes physiques. Elle est étroitement reliée à l'analyse dimensionnelle. L'adimensionnement ne doit pas être confondu avec la conversion de paramètres extensifs d'une équation en paramètres intensifs, car cette dernière procédure conduit toujours à des variables auxquelles des unités sont attachées.
Bott periodicity theoremIn mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by , which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group.
Monade (théorie des catégories)Une monade est une construction catégorique qui mime formellement le comportement que les monoïdes ont en algèbre. Introduite par Roger Godement sous le nom de « construction standard », la notion est d'abord diffusée sous le nom de triple avant d'être baptisée monade par Jean Bénabou. Elles permettent notamment de formuler des adjonctions et ont (au travers des comonades) un rôle important en géométrie algébrique, notamment en théorie des topos. Elles permettent également de définir les , dont les .
Smash-produitEn mathématiques et plus précisément en topologie algébrique, le smash-produit X∧Y de deux espaces topologiques pointés (X, x) et (Y, y) est le quotient du produit X × Y par les identifications pour tout x ∈ X et tout y ∈ Y. Cet espace dépend du pointage (sauf si X et Y sont homogènes). Les espaces X et Y sont plongés dans X × Y par identification aux sous-espaces X × {y} et {x} × Y, qui s'intersectent en un seul point : (x, y), le point base de X × Y.