Persan (chat)Le persan est une race de chats à poil long originaire d’Iran. Ce chat de taille moyenne à grande est caractérisé par son poil long et abondant, sa silhouette toute en rondeur et son visage au museau très court. La durée de vie d'un chat Persan se situe entre . Reconnue depuis la fin du , la race est d'abord modifiée par les Britanniques, puis essentiellement aux États-Unis après la Seconde Guerre mondiale. La sélection menée par les éleveurs a permis le développement d'une grande variété de robes, mais aussi d'une forme de visage très écrasée et controversée.
Groupe hyperboliqueEn théorie géométrique des groupes — une branche des mathématiques — un groupe hyperbolique, ou groupe à courbure négative, est un groupe de type fini muni d'une métrique des mots vérifiant certaines propriétés caractéristiques de la géométrie hyperbolique. Cette notion a été introduite et développée par Mikhaïl Gromov au début des années 1980. Il avait remarqué que beaucoup de résultats de Max Dehn concernant le groupe fondamental d'une surface de Riemann hyperbolique ne reposaient pas sur le fait qu'elle soit de 2 ni même que ce soit une variété, mais restaient vrais dans un contexte beaucoup plus général.
Group algebra of a locally compact groupIn functional analysis and related areas of mathematics, the group algebra is any of various constructions to assign to a locally compact group an operator algebra (or more generally a Banach algebra), such that representations of the algebra are related to representations of the group. As such, they are similar to the group ring associated to a discrete group. If G is a locally compact Hausdorff group, G carries an essentially unique left-invariant countably additive Borel measure μ called a Haar measure.
Quasi-isometryIn mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.
SphynxLe sphynx est une race de chats originaire du Canada. Ce chat est caractérisé par la quasi-absence de sa fourrure. C'est en 1966 au Canada qu'une chatte de gouttière donna naissance à une portée de chatons nus. Deux chattes furent ramenées aux Pays-Bas par le docteur Hugo Hernandez, où elles furent croisées avec des devon rex. Une portée entière est importée en France en 1983 par l'éleveur français Patrick Challain qui les présenta un an plus tard à l'exposition féline de Baltard.
UltralimiteEn mathématiques, une ultralimite est une construction géométrique qui associe à une suite d'espaces métriques Xn un espace métrique qui est leur « limite ». Cette construction est une généralisation de la convergence au sens de Hausdorff, et utilise un ultrafiltre pour éviter d'avoir à considérer des sous-suites convergentes. Pour la limite inductive d'une suite d'ultraproduits, voir Ultraproduit.
Algèbre de von NeumannUne algèbre de von Neumann (nommée en l'honneur de John von Neumann) ou W*-algèbre est une -algèbre d'opérateurs bornés sur un espace de Hilbert, fermée pour la topologie faible, et qui contient l'opérateur identité (définition « concrète ») . Les algèbres de von Neumann sont des C-algèbres. De façon surprenante, le théorème du bicommutant de von Neumann montre qu'elles admettent une définition purement algébrique équivalente à la définition topologique.
Théorèmes d'isomorphismeEn mathématiques, les trois théorèmes d'isomorphisme fournissent l'existence d'isomorphismes dans le cadre de la théorie des groupes. Ces trois théorèmes d'isomorphisme sont généralisables à d'autres structures que les groupes. Voir notamment « Anneau quotient », « Algèbre universelle » et « Groupe à opérateurs ». Le premier théorème d'isomorphisme affirme qu'étant donné un morphisme de groupes , on peut rendre injectif en quotientant par son noyau Ker f, qui est un sous-groupe normal de G.
Théorème de FubiniEn mathématiques, et plus précisément en analyse, le théorème de Fubini fournit des informations sur le calcul d'intégrales définies sur des ensembles produits et permet le calcul de telles intégrales. Ce résultat a été introduit par Guido Fubini en 1907. Il indique que sous certaines conditions, pour intégrer une fonction à plusieurs variables, on peut intégrer les variables les unes à la suite des autres.