In functional analysis and related areas of mathematics, the group algebra is any of various constructions to assign to a locally compact group an operator algebra (or more generally a Banach algebra), such that representations of the algebra are related to representations of the group. As such, they are similar to the group ring associated to a discrete group. If G is a locally compact Hausdorff group, G carries an essentially unique left-invariant countably additive Borel measure μ called a Haar measure. Using the Haar measure, one can define a convolution operation on the space Cc(G) of complex-valued continuous functions on G with compact support; Cc(G) can then be given any of various norms and the completion will be a group algebra. To define the convolution operation, let f and g be two functions in Cc(G). For t in G, define The fact that is continuous is immediate from the dominated convergence theorem. Also where the dot stands for the product in G. Cc(G) also has a natural involution defined by: where Δ is the modular function on G. With this involution, it is a *-algebra. Theorem. With the norm: Cc(G) becomes an involutive normed algebra with an approximate identity. The approximate identity can be indexed on a neighborhood basis of the identity consisting of compact sets. Indeed, if V is a compact neighborhood of the identity, let fV be a non-negative continuous function supported in V such that Then {fV}V is an approximate identity. A group algebra has an identity, as opposed to just an approximate identity, if and only if the topology on the group is the discrete topology. Note that for discrete groups, Cc(G) is the same thing as the complex group ring C[G]. The importance of the group algebra is that it captures the unitary representation theory of G as shown in the following Theorem. Let G be a locally compact group. If U is a strongly continuous unitary representation of G on a Hilbert space H, then is a non-degenerate bounded *-representation of the normed algebra Cc(G).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-314: Representation theory of finite groups
Group representation theory studies the actions of groups on vector spaces. This allows the use of linear algebra to study certain group theoretical questions. In this course the groups in question wi
MSE-487: Mathematical methods for materials science
The aim of the course is to review mathematical concepts learned during the bachelor cycle and apply them, both conceptually and computationally, to concrete problems commonly found in engineering and
PHYS-757: Axiomatic Quantum Field Theory
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...). Proofs of
Afficher plus
Séances de cours associées (10)
Topologie compacte ouverte
Couvre la topologie compacte ouverte, définissant les cartes entre les espaces et discutant des cartes continues et des préimages en topologie.
Représentations linéaires : bases et exemples
Couvre les représentations linéaires, l'isomorphisme, les modules G et la classification des représentations de C star et C plus.
Algèbre de groupe : le théorème de Maschke
Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Afficher plus
Publications associées (19)

Cyclic $A_\infty$-algebras and cyclic homology

We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
2023

Survey on the Figà–Talamanca Herz algebra

Antoine Derighetti

This paper presents a self contained approach to the theory of convolution operators on locally compact groups (both commutative and non commutative) based on the use of the Figà–Talamanca Herz algebras. The case of finite groups is also considered. ...
2019

Beyond Wiener's Lemma: Nuclear Convolution Algebras and the Inversion of Digital Filters

Michaël Unser, Julien René Pierre Fageot, John Paul Ward

A convolution algebra is a topological vector space X that is closed under the convolution operation. It is said to be inverse-closed if each element of X whose spectrum is bounded away from zero has a convolution inverse that is also part of the algebra. ...
SPRINGER BIRKHAUSER2019
Afficher plus
Personnes associées (2)
Concepts associés (4)
Espace de Hilbert
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Algèbre involutive
En mathématiques, une algèbre involutive ou une algèbre à involution est une algèbre munie d'un isomorphisme sur son algèbre opposée qui est involutif, c'est-à-dire de carré égal à l'identité. Dans cet article, K désigne un anneau commutatif, et les algèbres sur un anneau commutatif sont supposées être associatives et unitaires, et les homomorphismes entre algèbres sont supposés être unitaires, c'est-à-dire envoyer 1 sur 1. Soient A une algèbre sur K et μ la multiplication de A.
Algèbre de Hopf
En mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.