Graphe aléatoirevignette|Graphe orienté aléatoire avec 20 nœuds et une probabilité de présence d'arête égale à 0,1. En mathématiques, un graphe aléatoire est un graphe généré par un processus aléatoire. Le premier modèle de graphes aléatoires a été popularisé par Paul Erdős et Alfréd Rényi dans une série d'articles publiés entre 1959 et 1968. Il y a deux modèles d'Erdős et Rényi, formellement différents, mais étroitement liés : le graphe aléatoire binomial et le graphe aléatoire uniforme.
Variables indépendantes et identiquement distribuéesvignette|upright=1.5|alt=nuage de points|Ce nuage de points représente 500 valeurs aléatoires iid simulées informatiquement. L'ordonnée d'un point est la valeur simulée suivante, dans la liste des 500 valeurs, de la valeur simulée pour l'abscisse du point. En théorie des probabilités et en statistique, des variables indépendantes et identiquement distribuées sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes. On dit que ce sont des variables aléatoires iid ou plus simplement des variables iid.
Loi exponentielleUne loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement, ou sans usure : la probabilité que le phénomène dure au moins s + t heures (ou n'importe quelle autre unité de temps) sachant qu'il a déjà duré t heures sera la même que la probabilité de durer s heures à partir de sa mise en fonction initiale. En d'autres termes, le fait que le phénomène ait duré pendant t heures ne change rien à son espérance de vie à partir du temps t.
Variable aléatoirevignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.
Loi géométriqueEn théorie des probabilités et en statistique, la loi géométrique désigne, selon la convention choisie, l'une des deux lois de probabilité suivantes : la loi du nombre X d'épreuves de Bernoulli indépendantes de probabilité de succès p ∈ ]0,1[ (ou q = 1 – p d'échec) nécessaire pour obtenir le premier succès. X est la variable aléatoire donnant le rang du premier succès. Le support de la loi est alors {1, 2, 3, ...}. La loi du nombre Y = X – 1 d'échecs avant le premier succès. Le support de la loi est alors {0, 1, 2, 3, .
Loi de BernoulliEn mathématiques et plus précisément en théorie des probabilités, la loi de Bernoulli, du nom du mathématicien suisse Jacques Bernoulli, désigne la loi de probabilité d'une variable aléatoire discrète qui prend la valeur 1 avec la probabilité p et 0 avec la probabilité q = 1 – p. gauche|vignette Par exemple, dans pile ou face, le lancer d'une pièce de monnaie bien équilibrée tombe sur pile avec une probabilité 1/2 et sur face avec une probabilité 1/2.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Loi d'ErlangLa distribution d'Erlang est une loi de probabilité continue, dont l'intérêt est dû à sa relation avec les distributions exponentielle et Gamma. Cette distribution a été développée par Agner Krarup Erlang afin de modéliser le nombre d'appels téléphoniques simultanés. La distribution est continue et possède deux paramètres : le paramètre de forme , un entier, et le paramètre d'intensité , un réel. On utilise parfois une paramétrisation alternative, où on considère plutôt le paramètre d'échelle .
Loi de Laplace (probabilités)En théorie des probabilités et en statistiques, la loi (distribution) de Laplace est une densité de probabilité continue, portant le nom de Pierre-Simon de Laplace. On la connaît aussi sous le nom de loi double exponentielle, car sa densité peut être vue comme l'association des densités de deux lois exponentielles, accolées dos à dos. La loi de Laplace s'obtient aussi comme résultat de la différence de deux variables exponentielles indépendantes.
Problème de plus court cheminvignette|Exemple d'un plus court chemin du sommet A au sommet F : (A, C, E, D, F). En théorie des graphes, le 'problème de plus court chemin' est le problème algorithmique qui consiste à trouver un chemin d'un sommet à un autre de façon que la somme des poids des arcs de ce chemin soit minimale. Il existe de nombreuses variantes de ce problème suivant que le graphe est fini, orienté ou non, que chaque arc ou arête possède ou non une valeur qui peut être un poids ou une longueur.