Résumé
En mathématiques et plus précisément en théorie des probabilités, la loi de Bernoulli, du nom du mathématicien suisse Jacques Bernoulli, désigne la loi de probabilité d'une variable aléatoire discrète qui prend la valeur 1 avec la probabilité p et 0 avec la probabilité q = 1 – p. gauche|vignette Par exemple, dans pile ou face, le lancer d'une pièce de monnaie bien équilibrée tombe sur pile avec une probabilité 1/2 et sur face avec une probabilité 1/2. Une pièce peut ne pas être équilibrée et dans ce cas, on obtient pile avec une probabilité p ≠ 1/2 et face avec une probabilité q = 1 – p ≠ 1/2. En désignant pile par 1 et face par 0, on obtient une distribution de Bernoulli. De manière générale, la loi de Bernoulli est la loi de la variable aléatoire qui code le résultat d'une épreuve qui n'admet que deux issues (épreuve de Bernoulli) : 1 pour « succès », 0 pour « échec », ou quel que soit le nom qu'on donne aux deux issues d'une telle expérience aléatoire. Une variable aléatoire suivant la loi de Bernoulli est appelée variable de Bernoulli. Plus formellement, une variable aléatoire X suit la loi de Bernoulli de probabilité p si ou, de manière équivalente, L'espérance mathématique d'une variable aléatoire de Bernoulli vaut p et la variance vaut p(1 – p). Le kurtosis tend vers l'infini pour des valeurs hautes et basses de p, mais pour p = 1/2 la distribution de Bernoulli a un kurtosis plus bas que toute autre distribution, c’est-à-dire 1. Plus généralement, toute application mesurable à valeur dans {0,1} est une variable de Bernoulli. Autrement dit, toute fonction indicatrice d'un évènement suit une loi de Bernoulli. Réciproquement, pour toute variable de Bernoulli X définie sur (Ω, A, P), on peut trouver un ensemble mesurable B tel que X et la fonction indicatrice de B soient presque sûrement égales : toute variable de Bernoulli est presque sûrement égale à une fonction indicatrice. Si X, X, ...
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-232: Probability and statistics
A basic course in probability and statistics
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Afficher plus
Publications associées (51)
Concepts associés (23)
Processus de Bernoulli
En probabilités et en statistiques, un processus de Bernoulli est un processus stochastique discret qui consiste en une suite de variables aléatoires indépendantes qui prennent leurs valeurs parmi deux symboles. Prosaïquement, un processus de Bernoulli consiste à tirer à pile ou face plusieurs fois de suite, éventuellement avec une pièce truquée. Une variable dans une séquence de ce type peut être qualifiée de variable de Bernoulli. Un processus de Bernoulli est une chaîne de Markov. Son arbre de probabilité est un arbre binaire.
Épreuve de Bernoulli
vignette|Le pile ou face est un exemple d'épreuve de Bernouilli. En probabilité, une épreuve de Bernoulli de paramètre p (réel compris entre 0 et 1) est une expérience aléatoire (c'est-à-dire soumise au hasard) comportant deux issues, le succès ou l'échec. L'exemple typique est le lancer d'une pièce de monnaie possiblement pipée. On note alors p la probabilité d'obtenir pile (qui correspond disons à un succès) et 1-p d'obtenir face. Le réel p représente la probabilité d'un succès.
Fonction de masse (probabilités)
En théorie des probabilités, la fonction de masse est la fonction qui donne la probabilité de chaque issue ( résultat élémentaire) d'une expérience aléatoire. C'est souvent ainsi que l'on définit une loi de probabilité discrète. Elle se distingue de la fonction de densité, de la densité de probabilité, en ceci que les densités de probabilité ne sont définies que pour des variables aléatoires absolument continues, et que ce sont leurs intégrales sur des domaines qui ont valeurs de probabilités (et non leurs valeurs en des points).
Afficher plus