Geodesics on an ellipsoidThe study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry .
Hayford ellipsoidThe Hayford ellipsoid is a geodetic reference ellipsoid, named after the US geodesist John Fillmore Hayford (1868–1925), which was introduced in 1910. The Hayford ellipsoid was also referred to as the International ellipsoid 1924 after it had been adopted by the International Union of Geodesy and Geophysics IUGG in 1924, and was recommended for use all over the world. Many countries retained their previous ellipsoids. The Hayford ellipsoid is defined by its semi-major axis a = 6378388.000m and its flattening f = 1:297.
Ellipsoïde de BesselL'ellipsoïde de Bessel (encore appelé Bessel 1841) est un ellipsoïde de référence utilisé pour l'Europe. Friedrich Wilhelm Bessel l'a calculé en 1841 à partir d'un important recueil de données topographiques à travers l'Europe (incluant la Russie) et l'Inde. Sa conception repose au total sur la longueur de dix arcs de méridien et 38 mesures précises de latitudes et longitudes. Les dimensions de cet ellipsoïde furent exprimées (conformément aux procédés de calcul numérique de l'époque) par leur logarithme.
Îlot de stabilitéL’îlot de stabilité est un ensemble hypothétique de nucléides transuraniens qui présenteraient une période radioactive très supérieure à celle des isotopes voisins. Ce concept est issu du modèle en couches du noyau atomique, dans lequel les nucléons sont vus comme des objets quantiques qui se répartissent dans le noyau en niveaux d'énergie de façon similaire aux électrons dans les atomes : lorsqu'un niveau d'énergie est saturé de nucléons, cela confère une stabilité particulière au noyau.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
Polygone convexeEn géométrie, un polygone convexe est un polygone simple dont l'intérieur est un ensemble convexe. Un polygone simple qui n'est pas convexe est dit concave. Pour un polygone simple, les propriétés suivantes sont équivalentes : le polygone est convexe, les angles du polygone sont tous inférieurs à 180 degrés, tout segment joignant deux sommets du polygone est inclus dans la composante fermée bornée délimitée par le polygone. Le polygone est toujours entièrement inclus dans un demi-plan dont la frontière porte un côté quelconque du polygone.
VolumeLe volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace. En physique : le volume d'un objet ou d'une figure géométrique tridimensionnelle et fermée mesure l'extension dans l'espace physique qu'il ou elle possède dans les trois directions en même temps, de même que l'aire d'une figure dans le plan mesure l'extension qu'elle possède dans les deux directions en même temps ; par extension, on étend la notion de volume à des espaces abstraits, dont les coordonnées peuvent avoir une ou des dimensions autres que celle d'une longueur.
Convex geometryIn mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, probability theory, game theory, etc. According to the Mathematics Subject Classification MSC2010, the mathematical discipline Convex and Discrete Geometry includes three major branches: general convexity polytopes and polyhedra discrete geometry (though only portions of the latter two are included in convex geometry).
Théorème de Carathéodory (géométrie)vignette|Par exemple le point (1/4, 1/4) de l'enveloppe convexe des points (0, 0), (1, 0), (1, 1), (0, 1) se trouve dans l'intérieur du triangle (0, 0), (1, 0), (0, 1). Le théorème de Carathéodory est un théorème de géométrie relatif aux enveloppes convexes dans le contexte des espaces affines de dimension finie. Dans le plan, il affirme que tout point dans l'enveloppe convexe d'un ensemble de points est dans l'intérieur d'un triangle dont les sommets sont dans (l'enveloppe convexe d'un ensemble de points est l'ensemble des barycentres de trois points de ).
Vallée de stabilitéLa vallée de stabilité désigne, en physique nucléaire, l'endroit où se situent les isotopes stables, quand on porte en abscisse le numéro atomique et en ordonnée le nombre de neutrons de chaque isotope (carte des nucléides - les deux axes sont parfois inversés sur certaines représentations). Certains isotopes sont stables, d'autres ne le sont pas et donnent, après une émission radioactive, naissance à un autre élément qui peut être lui-même sous la forme d'un isotope stable ou radioactif.