Tension superficiellevignette|et aux gerridés de se déplacer à la surface d'une mare. La tension superficielle est un phénomène physico-chimique lié aux interactions moléculaires d'un fluide. Elle résulte de l'augmentation de l'énergie à l'interface entre deux fluides. Le système tend vers un équilibre qui correspond à la configuration de plus basse énergie, il modifie donc sa géométrie pour diminuer l'aire de cette interface. La force qui maintient le système dans cette configuration est la tension superficielle.
ExtremumUn extremum (pluriel extrema ou extremums), ou extrémum (pluriel extrémums), est une valeur extrême, soit maximum, soit minimum. Cette notion est particulièrement utilisée en mathématiques, où l'expression maximo-minimum, introduite par Nicolas de Cues, correspond à partir de Fermat et Leibniz aux extrêmes d'une courbe ou d'une fonction, repérés par le fait que les dérivées s'y annulent. Elle est aussi utilisée en physique, où le principe de moindre action est un principe extrémal ainsi que Euler l'a montré.
Droits des ÉtatsDans la politique aux États-Unis, le terme « droits des États » (states' rights) fait référence à la souveraineté individuelle des gouvernements des États américains vis-à-vis de l'État fédéral. La répartition des pouvoirs est déterminée par la Constitution, reflétant notamment les pouvoirs énumérés du Congrès et le Dixième amendement. La question des droits des États fut l'un des principaux arguments négationnistes du mouvement néo-confédéré, qui a cherché à légitimer a posteriori la « Cause perdue » de la Confédération, en niant le fait que l'esclavage fut la cause principale de la guerre de Sécession.
Dérivée fonctionnelleLa dérivée fonctionnelle est un outil mathématique du calcul des variations. Elle exprime la variation d'une fonctionnelle résultant d'une variation infinitésimale de la fonction fournie en argument. Cet outil est principalement utilisé pour trouver les extremums d'une fonctionnelle. En physique il est souvent nécessaire de minimiser une fonctionnelle, par exemple en mécanique analytique où la trajectoire suivie par un système doit minimiser l'action (voir principe de moindre action).
Gestion de projetLa gestion de projet, est l'ensemble des activités visant à organiser le bon déroulement d’un projet et à en atteindre les objectifs en temps et en heures selon les objectifs visés. Elle consiste à appliquer les méthodes, techniques, et outils de gestion spécifiques aux différentes étapes du projet, de l'évaluation de l'opportunité jusqu'à l'achèvement du projet. Cette activité porte également le nom de conduite de projet, pilotage de projet, ingénierie de projet, ou encore management de projet.
Organigramme de programmationthumb|Exemple simple d'organigramme. Un organigramme de programmation (parfois appelé algorigramme, logigramme ou plus rarement ordinogramme) est une représentation graphique normalisée de l'enchaînement des opérations et des décisions effectuées par un programme d'ordinateur. Il existe différents types d'organigrammes, désignés par des néologismes variés : Logigramme Un logigramme est un outil utilisé en Qualité qui permet de visualiser de façon séquentielle et logique les actions à mener et les décisions à prendre pour atteindre un objectif défini.
Multiplication par un scalairevignette|320x320px|Exemple de multiplication d'un vecteur par un scalaire En mathématiques, la multiplication par un scalaire est l'une des lois externes de base définissant un espace vectoriel en algèbre linéaire (ou plus généralement, un module en algèbre générale). Si K est un corps commutatif, la définition d'un espace vectoriel E sur K prescrit l'existence d'une loi de composition externe, une application de K × E dans E. L'image d'un couple (λ, v), pouvant être notée λv ou λ∙v, est la multiplication du vecteur v par le scalaire λ.
Fonction bêtathumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Courbure scalaireEn géométrie riemannienne, la courbure scalaire (ou scalaire de Ricci) est un des outils de mesure de la courbure d'une variété riemannienne. Cet invariant riemannien est une fonction qui affecte à chaque point m de la variété un simple nombre réel noté R(m) ou s(m), portant une information sur la courbure intrinsèque de la variété en ce point. Ainsi, on peut décrire le comportement infinitésimal des boules et des sphères centrées en m à l'aide de la courbure scalaire.