Quantité de mouvementEn physique, la quantité de mouvement est le produit de la masse par le vecteur vitesse d'un corps matériel supposé ponctuel. Il s'agit donc d'une grandeur vectorielle, définie par , qui dépend du référentiel d'étude. Par additivité, il est possible de définir la quantité de mouvement d'un corps non ponctuel (ou système matériel), dont il est possible de démontrer qu'elle est égale à la quantité de mouvement de son centre d'inertie affecté de la masse totale du système, soit (C étant le centre d'inertie du système).
Dynamique de rotationLa rotation d'un système est un cas particulier de mouvement important notamment de par ses applications industrielles (machines tournantes) mais aussi sur un plan plus fondamental pour la dynamique dans un référentiel tournant, dont le cas le plus important est donné par la dynamique terrestre. Dans un système matériel, d'après la loi des actions mutuelles (autrefois action et réaction) de Newton (cf lois du mouvement de Newton, énoncées en 1687), le torseur des forces intérieures au système est nul.
Velocity-addition formulaIn relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light. Such formulas apply to successive Lorentz transformations, so they also relate different frames. Accompanying velocity addition is a kinematic effect known as Thomas precession, whereby successive non-collinear Lorentz boosts become equivalent to the composition of a rotation of the coordinate system and a boost.
Référentiel en rotationUn référentiel en rotation est un cas particulier de référentiel non inertiel qui est en rotation par rapport à un référentiel inertiel. Un exemple courant d'un système de référence en rotation est la surface de la Terre. Ce référentiel permet de mesurer la vitesse et le sens de rotation en mesurant les forces fictives. Par exemple, Léon Foucault a pu démontrer la force de Coriolis résultant de la rotation de la Terre avec le pendule de Foucault. Cette animation montre le système de référence en rotation.
Fonction de courantLa fonction de courant en physique, en particulier en mécanique des fluides, est une fonction (à valeurs complexes) définie pour des écoulements de différents types. Elle donne le paramètre de la composante non divergente de n'importe quel champ de vitesse dont la valeur est constante le long de chaque ligne de courant. Elle peut donc être utilisée pour représenter les lignes de courant d'un fluide, correspondant aux trajectoires de particules dans un écoulement stationnaire.
Fluide newtonienOn appelle fluide newtonien (en hommage à Isaac Newton) un fluide dont la loi contrainte – vitesse de déformation est linéaire. La constante de proportionnalité est appelée viscosité. Viscosité L’équation décrivant le « comportement newtonien » en description eulérienne est : où : est la contrainte de cisaillement exercée par le fluide (à l'origine des forces de traînée), exprimée en Pa ; est la viscosité dynamique du fluide — une constante de proportionnalité caractéristique du matériau, en ; est le gradient de vitesse perpendiculaire à la direction de cisaillement, en s−1.
Théorie des écoulements à potentiel de vitessevignette|Diagrammes plan d'écoulement des fluides autour d'un cylindre et d'un profil d'aile En mécanique des fluides, la théorie des écoulements à potentiel de vitesse est une théorie des écoulements de fluide où la viscosité est négligée. Elle est très employée en hydrodynamique. La théorie se propose de résoudre les équations de Navier-Stokes dans les conditions suivantes : l'écoulement est stationnaire le fluide n'est pas visqueux il n'y a pas d'action externe (flux de chaleur, électromagnétisme, gravité .
Champ conservatifUn champ de vecteurs est dit à circulation conservative (ou irrotationnel) si sa circulation sur toute courbe fermée est nulle (son rotationnel est alors nul, et réciproquement). Sous certaines conditions relatives au domaine de définition et à la régularité du champ, on peut dériver le potentiel de ce champ, fonction scalaire qui en permet une représentation alternative. De même, un champ de vecteurs est dit à flux conservatif si son flux sur toute surface fermée est nul (sa divergence est alors nulle, et réciproquement).
Tourbillon de turbulencevignette|upright=0.75|Allées de Karman autour de Madère et des îles Canaries vignette|upright=0.75|Les courants océaniques de Oya shivo et Kuroshio se rencontrent et donnent un tourbillon de turbulence visible par la concentration du phytoplancton dans le vortex. Un tourbillon de turbulence est un élément d'une masse fluide turbulente qui a une certaine individualité et une certaine vie qui lui sont propres. Il peut être causé par un obstacle dans le flot créant un contre-courant, par une différence de densité entre deux sections du fluide ou par la rencontre de deux fluides.
Mouvement de rotationLa rotation ou mouvement de rotation est l'un des deux mouvements simples fondamentaux des solides, avec le mouvement rectiligne. En génie mécanique, il correspond au mouvement d'une pièce en liaison pivot par rapport à une autre. La notion de mouvement circulaire est une notion de cinématique du point : on décrit la position d'un point dans le plan. La rotation est une notion de cinématique du solide : on décrit l'orientation d'un solide dans l'espace. L'étude du mouvement de rotation est la base de la méthode du centre instantané de rotation (CIR).