Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
DeutériumLe deutérium, noté H ou D, est l'isotope de l'hydrogène dont le nombre de masse est égal à 2 : son noyau atomique, appelé deuton ou deutéron, compte et avec un spin 1+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Il s'agit d'un isotope stable découvert en 1931 par Harold Clayton Urey, chimiste à l'université Columbia ; cette découverte lui valut le prix Nobel de chimie en 1934. vignette|Tube à gaz au deutérium.
Effet Overhauser nucléaireEn spectroscopie RMN, l'effet Overhauser nucléaire décrit une interaction entre deux spins à travers l'espace et non pas à travers les liaisons chimiques comme le couplage scalaire. Cette interaction est limitée à environ 5-6 Å. En anglais, cet effet s'appelle "Nuclear Overhauser Effect", soit NOE. Cet acronyme est souvent utilisé en français sous l'expression "effet NOE". Une des conséquences de la résonance magnétique nucléaire est l'interaction dipôle-dipôle à travers l'espace.
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
Précession de Larmorthumb|150px En physique, la précession de Larmor (nommée d'après Joseph Larmor) est la précession du moment magnétique des électrons, des noyaux atomiques ou des atomes soumis à un champ magnétique. Le champ magnétique exerce un couple sur le moment magnétique, où est le couple, est le moment magnétique dipolaire, est le vecteur moment cinétique, est le champ magnétique, est le produit vectoriel, et est le rapport gyromagnétique donnant la constante de proportionnalité entre le moment magnétique et le moment angulaire.
Paramètres SLes paramètres S (de l'anglais Scattering parameters), coefficients de diffraction ou de répartition sont utilisés en hyperfréquences, en électricité ou en électronique pour décrire le comportement électrique de réseaux électriques linéaires en fonction des signaux d'entrée. Ces paramètres font partie d'une famille de formalismes similaires, utilisés en électronique, en physique ou en optique : les paramètres Y, les paramètres Z, les paramètres H, les paramètres T ou les paramètres ABCD.
Nuclear magnetic resonance spectroscopy of proteinsNuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others.
Impedance parametersImpedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.
Polarisation circulaireLa polarisation circulaire d'un rayonnement électromagnétique est une polarisation où la norme du vecteur du champ électrique ne change pas alors que son orientation change selon un mouvement de rotation. En électrodynamique la norme et la direction d'un champ électrique sont représentés par un vecteur comme on peut le voir dans l'animation ci-contre. Dans le cas d'une onde polarisée circulairement, les vecteurs d'un champ électrique, à un point donné dans l'espace, décrivent un cercle en fonction du temps.