Filtre (audio)Dans le traitement du signal, un filtre est un appareil ou une fonction servant à retirer ou bien à accentuer ou réduire certaines parties du spectre sonore représentées dans un signal. Les filtres sont essentiels dans plusieurs fonctions des appareils électroniques (voir Filtre (électronique)). Nous ne traiterons ici que des filtres accessibles par des commandes dans les tranches des consoles de mixage et les égaliseurs qui permettent d'ajuster la tonalité des sons.
Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.
Total variation denoisingIn signal processing, particularly , total variation denoising, also known as total variation regularization or total variation filtering, is a noise removal process (filter). It is based on the principle that signals with excessive and possibly spurious detail have high total variation, that is, the integral of the absolute is high. According to this principle, reducing the total variation of the signal—subject to it being a close match to the original signal—removes unwanted detail whilst preserving important details such as .
Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Filtre numériqueEn électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.
Filtre linéaireUn filtre linéaire est, en traitement du signal, un système qui applique un opérateur linéaire à un signal d'entrée. Les filtres linéaires sont rencontrés le plus souvent en électronique, mais il est possible d'en trouver en mécanique ou dans d'autres technologies. Une réponse impulsionnelle est la sortie d'un système dont l'entrée est une impulsion de Dirac(). Les filtres linéaires peuvent être divisés en deux groupes : les filtres à réponse impulsionnelle infinie et les filtres à réponse impulsionnelle finie.
Filtre en peigneUn filtre en peigne est utilisé en traitement du signal pour ajouter une version retardée du signal à lui-même, provoquant des interférences destructives ou constructives. La réponse en fréquence du filtre se présente sous la forme d'une série de pics régulièrement espacés, d'où le nom de « filtre en peigne ». Le facteur de qualité équivalent (la pente du filtre) est extrêmement important. Les filtres en peigne existent sous deux formes utilisant soit l'anticipation soit la rétroaction, en fonction de la direction du signal ajouté au signal original.
Discrete-time Fourier transformIn mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Filtre (électronique)En électronique, un filtre est un circuit linéaire qui transmet une grandeur électrique (courant ou tension) selon sa répartition en fréquences. Le filtre transforme l'histoire de cette grandeur d'entrée (c'est-à-dire ses valeurs successives depuis un certain temps) en une grandeur de sortie. Pour raisonner sur les filtres électroniques, on les considère comme des quadripôles dont les grandeurs électriques d'entrée et de sortie seraient un signal, même quand celles-ci ne servent pas à transmettre de l'information (comme dans le cas des filtres d'alimentation).