Architecture de processeurUne architecture externe de processeur ou architecture de jeu d'instructions (ISA, de l'anglais instruction set architecture), ou tout simplement architecture (de processeur), est la spécification fonctionnelle d'un processeur, du point de vue du programmeur en langage machine. L'architecture comprend notamment la donnée d'un jeu d'instructions, d'un ensemble de registres visibles par le programmeur, d'une organisation de la mémoire et des entrées sorties, des modalités d'un éventuel support multiprocesseur, etc.
HypergrapheLes hypergraphes sont des objets mathématiques généralisant la notion de graphe. Ils ont été nommés ainsi par Claude Berge dans les années 1960. Les hypergraphes généralisent la notion de graphe non orienté dans le sens où les arêtes ne relient plus un ou deux sommets, mais un nombre quelconque de sommets (compris entre un et le nombre de sommets de l’hypergraphe). Certains théorèmes de la théorie des graphes se généralisent naturellement aux hypergraphes, par exemple le théorème de Ramsey.
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
Conception assistée par ordinateur pour l'électroniqueLa CAO électronique (pour Conception assistée par ordinateur électronique), nommée également en anglais EDA (pour Electronic design automation), est la catégorie des outils servant à la conception et la production des systèmes électroniques allant des circuits imprimés jusqu'aux circuits intégrés. Le terme CAO est aussi utilisé pour désigner la CAO mécanique, la conception assistée par ordinateur et la fabrication assistée par ordinateur en électronique et en électrotechnique.
Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Topologie algébriqueLa topologie algébrique, anciennement appelée topologie combinatoire, est la branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories. L'idée fondamentale est de pouvoir associer à tout espace topologique des objets algébriques (nombre, groupe, espace vectoriel, etc.
Feedback arc setvignette|Ce graphe orienté n'a pas de circuits: il n'est pas possible de partir d'un sommet quelconque et de revenir à ce même point, en suivant les connexions dans la direction indiquée par les flèches. En théorie des graphes, un graphe orienté peut contenir des circuits, c'est-à-dire des chemins qui reviennent sur leur point de départ. Dans certaines applications, ces circuits sont indésirables, et on cherche à les éliminer pour obtenir un graphe orienté acyclique (souvent abrégé en DAG).
Graphe dualEn théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
Mixed graphIn graph theory, a mixed graph G = (V, E, A) is a graph consisting of a set of vertices V, a set of (undirected) edges E, and a set of directed edges (or arcs) A. Consider adjacent vertices . A directed edge, called an arc, is an edge with an orientation and can be denoted as or (note that is the tail and is the head of the arc). Also, an undirected edge, or edge, is an edge with no orientation and can be denoted as or . For the purpose of our application example we will not be considering loops or multiple edges of mixed graphs.
Graphe fortement régulierEn théorie des graphes, qui est un domaine des mathématiques, un graphe fortement régulier est un type de graphe régulier. Soit G = (V,E) un graphe régulier ayant v sommets et degré k. On dit que G est fortement régulier s'il existe deux entiers λ et μ tels que Toute paire de sommets adjacents a exactement λ voisins communs. Toute paire de sommets non-adjacents a exactement μ voisins communs. Un graphe avec ces propriétés est appelé un graphe fortement régulier de type (v,k,λ,μ).