Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Tore maximalEn mathématiques, un tore maximal d'un groupe de Lie G est un sous-groupe de Lie commutatif, connexe et compact de G qui soit maximal pour ces propriétés. Les tores maximaux de G sont uniques à conjugaison près. De manière équivalente, c'est un de G, isomorphe à un tore, et maximal pour cette propriété. Le quotient du normalisateur N(T) d'un tore T par T est le groupe de Weyl associé. Tout groupe de Lie commutatif connexe est isomorphe à un quotient de Rn par un sous-réseau, donc à un tore Tn.
Projective orthogonal groupIn projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group PO(V) = O(V)/ZO(V) = O(V)/{±I} where O(V) is the orthogonal group of (V) and ZO(V)={±I} is the subgroup of all orthogonal scalar transformations of V – these consist of the identity and reflection through the origin.
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Indefinite orthogonal groupIn mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2. The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1.
Théorie des typesEn mathématiques, logique et informatique, une théorie des types est une classe de systèmes formels, dont certains peuvent servir d'alternatives à la théorie des ensembles comme fondation des mathématiques. Ils ont été historiquement introduits pour résoudre le paradoxe d'un axiome de compréhension non restreint. En théorie des types, il existe des types de base et des constructeurs (comme celui des fonctions ou encore celui du produit cartésien) qui permettent de créer de nouveaux types à partir de types préexistant.
Sûreté du typageLa sûreté du typage est un principe permettant d'améliorer la qualité de la programmation. Dans les langages à typage statique, l'un des objectifs est d'intercepter les erreurs de type de données lors de la compilation. Un type peut être vu comme un ensemble de valeurs et un ensemble d'opérateurs. La programmation objet a introduit les notions d'objets, messages, classes, héritage. Il est tentant de faire coller les classes à des types.
Torevignette|Modélisation d'un tore Un tore est un solide géométrique représentant un tube courbé refermé sur lui-même. Le terme « tore » comporte différentes acceptions plus spécifiques selon le contexte : en ingénierie ou en géométrie élémentaire, un tore est un solide de révolution de l'espace obtenu à partir d'un cercle, ou bien sa surface. Une chambre à air, une bouée, certains joints d'étanchéité ou encore certains beignets (les donuts nord-américains) ont ainsi une forme plus ou moins torique ; en architecture, un tore correspond à une moulure ronde, semi-cylindrique.
Inférence de typesL'inférence de types est un mécanisme qui permet à un compilateur ou un interpréteur de rechercher automatiquement les types associés à des expressions, sans qu'ils soient indiqués explicitement dans le code source. Il s'agit pour le compilateur ou l'interpréteur de trouver le type le plus général que puisse prendre l'expression. Les avantages à disposer de ce mécanisme sont multiples : le code source est plus aéré, le développeur n'a pas à se soucier de retenir les noms de types, l'interpréteur fournit un moyen au développeur de vérifier (en partie) le code qu'il a écrit et le programme est peu modifié en cas de changement de structure de données.