Translation operator (quantum mechanics)In quantum mechanics, a translation operator is defined as an operator which shifts particles and fields by a certain amount in a certain direction. More specifically, for any displacement vector , there is a corresponding translation operator that shifts particles and fields by the amount . For example, if acts on a particle located at position , the result is a particle at position . Translation operators are unitary.
Constant of motionIn mechanics, a constant of motion is a quantity that is conserved throughout the motion, imposing in effect a constraint on the motion. However, it is a mathematical constraint, the natural consequence of the equations of motion, rather than a physical constraint (which would require extra constraint forces). Common examples include energy, linear momentum, angular momentum and the Laplace–Runge–Lenz vector (for inverse-square force laws). Constants of motion are useful because they allow properties of the motion to be derived without solving the equations of motion.
Mécanique quantique relationnelleLa mécanique quantique relationnelle (MQR) est une interprétation de la mécanique quantique qui traite l'état d'un système quantique comme étant dépendant de l'observateur, c'est-à-dire que l'état est la relation entre l'observateur et le système. Cette interprétation a été décrite pour la première fois par Carlo Rovelli en 1994, et a été développée depuis par un certain nombre de théoriciens. Elle s'inspire d'une idée clé de la relativité restreinte, selon laquelle les détails d'une observation dépendent du cadre de référence de l'observateur, et utilise certaines idées de Wheeler sur l'information quantique .
Chronologie de la physique microscopiqueCette page physique microscopique présente dans leur ordre historique, la découverte des concepts liés aux petites pièces qui forment la matière. La connaissance de l'infiniment petit ne s'est faite que progressivement, au travers de l'évolution de différentes sciences et techniques, dont, la philosophie, la métallurgie, la thermodynamique, l'alchimie et la chimie, l'électricité, l'optique, la cristallographie, le magnétisme, la physique, la mécanique quantique.
Fonction de Wignervignette| Fonction de Wigner d'un état du type du "chat de Schrödinger" (mélange de 2 états opposés) La fonction de Wigner (également appelée distribution de quasi-probabilité de Wigner) a été introduite par Eugene Wigner en 1932 pour étudier les corrections quantiques à la mécanique statistique classique. L'objectif était de lier la fonction d'onde qui apparaît dans l'équation de Schrödinger à une distribution de probabilité dans l'espace des phases.
Limite classiqueLa limite classique ou limite de correspondance est la capacité d'une théorie physique à retrouver pour certaines valeurs de ses paramètres les principes et résultats de la physique classique, c'est-à-dire la physique élaborée jusqu'à la fin du . La limite classique est utilisée avec des théories physiques qui prédisent un comportement non classique ; l'exemple le plus connu est la mécanique quantique, dont les grandeurs caractéristiques font toujours intervenir la constante de Planck ; sa limite classique est donc le plus souvent associée à la limite .
Expériences sur les inégalités de BellLes expériences sur les inégalités de Bell, parfois nommées expériences EPR sont conçues pour démontrer l'existence dans le monde réel de certaines conséquences théoriques du phénomène d'intrication en mécanique quantique, phénomène supposé ne pouvant pas se produire selon une image classique du monde caractérisée par la notion de principe de localité. En vertu du principe de localité, les corrélations entre les résultats des différentes mesures effectuées sur des systèmes physiquement séparés doivent satisfaire à certaines contraintes, appelées inégalités de Bell.
Tensor operatorIn pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.
UnitaritéEn mécanique quantique, l'unitarité désigne le fait que l'évolution de la fonction d'onde au cours du temps doit être compatible avec l'interprétation probabiliste qui lui est associée. La fonction d'onde d'un système quantique, comme l'électron par exemple, permet de déterminer la probabilité de présence de celui-ci dans une petite boîte de volume centrée en par Et comme la probabilité totale de trouver le système quelque part doit être de un, il en découle qu'on doit avoir en intégrant sur tout l'espace.