Lovász numberIn graph theory, the Lovász number of a graph is a real number that is an upper bound on the Shannon capacity of the graph. It is also known as Lovász theta function and is commonly denoted by , using a script form of the Greek letter theta to contrast with the upright theta used for Shannon capacity. This quantity was first introduced by László Lovász in his 1979 paper On the Shannon Capacity of a Graph. Accurate numerical approximations to this number can be computed in polynomial time by semidefinite programming and the ellipsoid method.
Invariant de grapheEn théorie des graphes, un invariant de graphe est une quantité qui n'est pas modifiée par isomorphisme de graphes. Un invariant de graphe ne dépend donc que de la structure abstraite et pas des particularités de la représentation comme l'étiquetage ou le tracé. De nombreux invariants sont conservés par certains préordres ou ordres partiels naturels sur les graphes : Une propriété est monotone si elle est héritée par les sous-graphes. Le caractère biparti, sans triangle, ou planaire sont des exemples de propriétés monotones.
Signed graphIn the area of graph theory in mathematics, a signed graph is a graph in which each edge has a positive or negative sign. A signed graph is balanced if the product of edge signs around every cycle is positive. The name "signed graph" and the notion of balance appeared first in a mathematical paper of Frank Harary in 1953. Dénes Kőnig had already studied equivalent notions in 1936 under a different terminology but without recognizing the relevance of the sign group.
Grundy numberIn graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible. Grundy numbers are named after P. M. Grundy, who studied an analogous concept for directed graphs in 1939. The undirected version was introduced by .
List edge-coloringIn mathematics, list edge-coloring is a type of graph coloring that combines list coloring and edge coloring. An instance of a list edge-coloring problem consists of a graph together with a list of allowed colors for each edge. A list edge-coloring is a choice of a color for each edge, from its list of allowed colors; a coloring is proper if no two adjacent edges receive the same color. A graph G is k-edge-choosable if every instance of list edge-coloring that has G as its underlying graph and that provides at least k allowed colors for each edge of G has a proper coloring.
Graphe sans triangleEn théorie des graphes, un graphe sans triangle est un graphe qui ne possède pas de triplet d'arêtes formant un triangle. Le théorème de Mantel, cas particulier du théorème de Turán, est : La famille des graphes sans triangle, contient notamment les graphes acycliques et est contenue dans les graphes sans diamant. Les graphes sans triangle peuvent être reconnus en temps , où est le nombre d'arêtes. De façon plus générale, on peut reconnaître les graphes n'ayant pas de cycles d'une certaine longueur (fixé dans l'algorithme), en temps (avec le nombre de sommets) ou en temps .
Graphe de disquesEn théorie des graphes, un graphe de disques (ou disk graph en anglais) est le graphe d'intersection d'une collection de disques. C'est une extension du concept de graphe d'intervalle à la dimension 2. Formellement, G est un graphe de disques s'il existe une collection de disques dans le plan dont les centres sont en bijection avec les sommets de G et telle que deux disques s'intersectent si et seulement si les sommets correspondants sont reliés par une arête dans G.
Interval orderIn mathematics, especially order theory, the interval order for a collection of intervals on the real line is the partial order corresponding to their left-to-right precedence relation—one interval, I1, being considered less than another, I2, if I1 is completely to the left of I2. More formally, a countable poset is an interval order if and only if there exists a bijection from to a set of real intervals, so , such that for any we have in exactly when .
Nombre de croisements (théorie des graphes)vignette| Une représentation du graphe de Heawood avec trois croisements. C'est le nombre minimum de croisements parmi toutes les représentations de ce graphe, qui a donc un nombre de croisements . En théorie des graphes, le nombre de croisements d'un graphe G est le plus petit nombre d'intersections d'arêtes d'un tracé du graphe G. Par exemple, un graphe est planaire si et seulement si son nombre de croisements est nul. La détermination du nombre de croisements tient une place importante dans le tracé de graphes.
Théorie existentielle sur les réelsEn logique mathématique, la théorie existentielle sur les réels est l'ensemble des formules existentielles de la logique premier ordre vraies sur les réels. Elle est intéressante pour la planification de mouvement de robots. Elle est décidable et NP-dure et dans PSPACE. Elle définit aussi une classe de complexité entre NP et PSPACE, notée , pour laquelle des problèmes géométriques sur les graphes sont complets. La classe est la classe des problèmes de décision qui se réduisent en temps polynomial à vérifier si une formule de la théorie existentielle sur les réels est vraie.