Évaluation du prix d'une actionL'évaluation d'action est ici l'estimation, à partir de critères qui se veulent objectifs, de la valeur de marché potentielle d'une action. Évaluer la valeur d'une action se pose dans des termes très différents suivant que l'on s'intéresse à un portefeuille financier ou au contrôle d'une entreprise. La valeur financière d'une action reflète l'état financier de l'entreprise. Analyser l'état financier d'une entreprise est l'objet de l'analyse financière. Pour investir dans une action, l'investisseur évalue la rentabilité de l'action et le risque associé.
Project initiation documentationThe project initiation documentation (PID) is one of the most significant artifacts in project management, which provides the foundation for the business project. The project initiation documentation bundles the information, which was acquired through the starting up a project (SU) and initiating a project (IP) processes in a PRINCE2 controlled project environment. PRINCE2's 2009 renaming "document" to "documentation" indicates a collection of documentation that has been collected up creating a project rather than all the information in the system.
Valuation ringIn abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D. Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring.
Fonction elliptique de JacobiEn mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.
Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Coût d'opportunitéLe coût d'opportunité (de l'anglais opportunity cost), également appelé coût d'option, coût alternatif, coût de substitution, coût de renonciation ou encore coût de renoncement désigne la perte des biens auxquels on renonce lorsqu'on procède à un choix, autrement dit lorsqu'on affecte les ressources disponibles à un usage donné au détriment d'autres choix. C'est le coût d'une chose estimé en termes d'opportunités non réalisées, ou encore la valeur de la meilleure autre option non réalisée.
Ordinal utilityIn economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility. For example, suppose George tells us that "I prefer A to B and B to C".
Discrete valuationIn mathematics, a discrete valuation is an integer valuation on a field K; that is, a function: satisfying the conditions: for all . Note that often the trivial valuation which takes on only the values is explicitly excluded. A field with a non-trivial discrete valuation is called a discrete valuation field. To every field with discrete valuation we can associate the subring of , which is a discrete valuation ring. Conversely, the valuation on a discrete valuation ring can be extended in a unique way to a discrete valuation on the quotient field ; the associated discrete valuation ring is just .
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.