Time–frequency analysisIn signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Opérateur elliptiqueEn mathématiques, un opérateur elliptique est un opérateur différentiel qui généralise l'opérateur laplacien. Les opérateurs elliptiques sont définis via la condition que les coefficients devant les termes de dérivation de plus haut degré soient positifs, ce qui est équivalent au fait qu'il n'y a pas de caractéristique réelle. Les opérateurs elliptiques jouent un rôle crucial en théorie du potentiel et apparaissent fréquemment en électrostatique et en mécanique des milieux continus.
Carré gréco-latinUn 'carré gréco-latin' ou carré eulérien d'ordre n, sur deux ensembles G et L de chacun n symboles, est un tableau carré de n lignes et n colonnes, contenant les n couples de , et où toute ligne et toute colonne contient exactement une fois chaque élément de L (en première position dans l'un des n couples) et chaque élément de G (en seconde position). Il s'agit de la superposition de deux carrés latins orthogonaux l'un à l'autre. On dit aussi « carré bilatin ».
Théorème fondamental de l'analyseEn mathématiques, le théorème fondamental de l'analyse (ou théorème fondamental du calcul différentiel et intégral) établit que les deux opérations de base de l'analyse, la dérivation et l'intégration, sont, dans une certaine mesure, réciproques l'une de l'autre. Il est constitué de deux familles d'énoncés (plus ou moins généraux selon les versions, et dépendant de la théorie de l'intégration choisie) : premier théorème : certaines fonctions sont « la dérivée de leur intégrale » ; second théorème : certaines fonctions sont « l'intégrale de leur dérivée ».
Orthogonal arrayIn mathematics, an orthogonal array (more specifically, a fixed-level orthogonal array) is a "table" (array) whose entries come from a fixed finite set of symbols (for example, {1,2,...,v}), arranged in such a way that there is an integer t so that for every selection of t columns of the table, all ordered t-tuples of the symbols, formed by taking the entries in each row restricted to these columns, appear the same number of times. The number t is called the strength of the orthogonal array.
Dérivée directionnelleEn analyse mathématique, la notion de dérivée directionnelle permet de quantifier la variation locale d'une fonction dépendant de plusieurs variables, en un point donné et le long d'une direction donnée dans l'espace de ces variables. Dans la version la plus simple, la dérivée directionnelle généralise la notion de dérivées partielles, dans le sens où l'on retrouve ces dernières en prenant comme directions de dérivation les axes de coordonnées. Le concept de dérivée directionnelle est fondamental en analyse.