Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Espace préhilbertienEn mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d'un produit scalaire. Cette notion généralise celles d'espace euclidien ou hermitien dans le cas d'une dimension quelconque, tout en conservant certaines bonnes propriétés géométriques des espaces de dimension finie grâce aux propriétés du produit scalaire, mais en perdant un atout de taille : un espace préhilbertien de dimension infinie n'est pas nécessairement complet. On peut cependant le compléter, pour obtenir un espace de Hilbert.
Microscopie par excitation à deux photonsvignette|350px|Microscopie par excitation à 2 photons de l'intestin d'une souris. Rouge: actine. Vert: noyaux des cellules. Bleu: mucus des cellules caliciformes. Obtenu à 780 nm avec un laser Ti-sapph. La microscopie par excitation à deux photons (M2P, TPEF ou 2PEF en anglais, aussi appelée « microscopie 2 photons ») est une technique d'imagerie optique combinant les principes de microscopie à fluorescence et de l'absorption à deux photons, faisant partie de la famille des microscopies multiphotons.
Exploration de donnéesL’exploration de données, connue aussi sous l'expression de fouille de données, forage de données, prospection de données, data mining, ou encore extraction de connaissances à partir de données, a pour objet l’extraction d'un savoir ou d'une connaissance à partir de grandes quantités de données, par des méthodes automatiques ou semi-automatiques.
Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.
Axiome du choix dénombrablevignette|Chaque ensemble dans la suite dénombrable d'ensembles (Si) = S1, S2, S3, ... contient un élément différent de zéro, et éventuellement une infinité (ou même une infinité indénombrable) d'éléments. L'axiome du choix dénombrable nous permet de sélectionner arbitrairement un seul élément de chaque ensemble, formant une suite correspondante d'éléments (xi) = x1, x2, x3, ...
Optimisation par essaims particulairesL'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995. Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Numerical cognitionNumerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.
Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.