Continuous wavelet transformIn mathematics, the continuous wavelet transform (CWT) is a formal (i.e., non-numerical) tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously. The continuous wavelet transform of a function at a scale (a>0) and translational value is expressed by the following integral where is a continuous function in both the time domain and the frequency domain called the mother wavelet and the overline represents operation of complex conjugate.
Morlet waveletIn mathematics, the Morlet wavelet (or Gabor wavelet) is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing and vision. Wavelet#History In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off between spatial and frequency resolution.
Opérateur non bornéEn analyse fonctionnelle, un opérateur non borné est une application linéaire partiellement définie. Plus précisément, soient X, Y deux espaces vectoriels. Un tel opérateur est donné par un sous-espace dom(T) de X et une application linéaire dont l'ensemble de définition est dom(T) et l'ensemble d'arrivée est Y. Considérons X = Y = L(R) et l'espace de Sobolev H(R) des fonctions de carré intégrable dont la dérivée au sens des distributions appartient, elle aussi, à L(R).
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
Filter bankIn signal processing, a filter bank (or filterbank) is an array of bandpass filters that separates the input signal into multiple components, each one carrying a single frequency sub-band of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal.
Traitement analogique du signalLe traitement analogique du signal est un type de traitement du signal effectué sur des signaux analogiques continus par un processus analogique, par opposition au traitement numérique du signal discret où le traitement du signal est effectué par un processus numérique. Le terme analogique indique qu'on représente mathématiquement le signal comme une série de valeurs continues, contrairement au terme numérique, qui indique plutôt qu'on représente le signal par une série de valeurs discrètes.
Traitement du sonLe traitement du son est la branche du traitement du signal qui s'applique aux signaux audio, dans le but notamment d'en améliorer la qualité, de les compresser, ou d'en extraire de l'information. Le terme analogique désigne quelque chose qui est mathématiquement représenté par une fonction continue. Donc un signal analogique est un signal représenté par un flux continu de donnée, ici dans un circuit électrique sous la forme de tension ou de courant.
Endomorphisme autoadjointEn mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d'espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype d'espace de Hilbert est un espace euclidien, c'est-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni d'un produit scalaire. L'analogue sur le corps des complexes s'appelle un espace hermitien.
Opérateur compactEn mathématiques, et plus précisément en analyse fonctionnelle, un opérateur compact est une application continue entre deux espaces vectoriels topologiques X et Y envoyant les parties bornées de X sur les parties relativement compactes de Y. Les applications linéaires compactes généralisent les applications linéaires continues de rang fini. La théorie est particulièrement intéressante pour les espaces vectoriels normés ou les espaces de Banach. En particulier, dans un espace de Banach, l'ensemble des opérateurs compacts est fermé pour la topologie forte.
Coordonnées orthogonalesEn mathématiques, les coordonnées orthogonales sont définies comme un ensemble de d coordonnées q = (q1, q2..., qd) dans lequel toutes les surfaces coordonnées se rencontrent à angle droit. Une surface coordonnée particulière de coordonnée qk est une courbe, une surface ou une hypersurface sur laquelle chaque qk est une constante. Par exemple, le système de coordonnées cartésiennes de dimension 3 (x, y, z) est un système de coordonnées orthogonales puisque ses surfaces coordonnées x = constante, y = constante et z = constante sont des plans deux à deux perpendiculaires.