Fonction triangulairevignette|Exemple de fonction triangulaire. Une fonction triangulaire (ou fonction triangle, fonction chapeau ou fonction tente) est une fonction dont la représentation graphique est un triangle. Souvent, c'est un triangle isocèle de hauteur 1 et de base 2 et dans ce cas, on s'y réfère comme la fonction triangulaire. Les fonctions triangulaires sont utiles en traitement du signal et en génie des systèmes de communication comme représentations idéalisées des signaux, et particulièrement la fonction triangulaire comme un opérateur intégral de noyau à partir de laquelle des signaux plus réalistes peuvent être dérivés, par exemple dans l'estimation de densités de noyaux.
Non-uniform discrete Fourier transformIn applied mathematics, the nonuniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, magnetic resonance imaging, and the numerical solution of partial differential equations.
TopographieLa topographie (du grec topos, « lieu », et graphein, « dessiner ») est la science qui permet la mesure puis la représentation sur un plan ou une carte des formes et détails visibles sur le terrain, qu'ils soient naturels (notamment le relief et l'hydrographie) ou artificiels (comme les bâtiments, les routes). Son objectif est de déterminer la position et l'altitude de n'importe quel point situé dans une zone donnée, qu'elle soit de la taille d'un continent, d'un pays, d'un champ ou d'un corps de rue.
Fonction à valeurs vectoriellesEn mathématiques, une fonction à valeurs vectorielles ou fonction vectorielle est une fonction dont l'espace d'arrivée est un ensemble de vecteurs, son ensemble de définition pouvant être un ensemble de scalaires ou de vecteurs. Courbe paramétrée Un exemple classique de fonctions vectorielles est celui des courbes paramétrées, c'est-à-dire des fonctions d'une variable réelle (représentant par exemple le temps dans les applications en mécanique du point) à valeurs dans un espace euclidien, par exemple le plan usuel (on parle alors de courbes planes) ou l'espace usuel (on parle alors de courbes gauches).
Algorithme de triUn algorithme de tri est, en informatique ou en mathématiques, un algorithme qui permet d'organiser une collection d'objets selon une relation d'ordre déterminée. Les objets à trier sont des éléments d'un ensemble muni d'un ordre total. Il est par exemple fréquent de trier des entiers selon la relation d'ordre usuelle « est inférieur ou égal à ». Les algorithmes de tri sont utilisés dans de très nombreuses situations. Ils sont en particulier utiles à de nombreux algorithmes plus complexes dont certains algorithmes de recherche, comme la recherche dichotomique.
Multidimensional discrete convolutionIn signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space. It is also a special case of convolution on groups when the group is the group of n-tuples of integers. Similar to the one-dimensional case, an asterisk is used to represent the convolution operation.
Fonction gaussiennevignette|Fonction gaussienne pour μ = 0, σ = 1 ; courbe centrée en zéro. Une fonction gaussienne est une fonction en exponentielle de l'opposé du carré de l'abscisse (une fonction en exp(-x)). Elle a une forme caractéristique de courbe en cloche. L'exemple le plus connu est la densité de probabilité de la loi normale où μ est l'espérance mathématique et σ est l'écart type. Les fonctions gaussiennes sont analytiques, de limite nulle en l'infini. La largeur à mi-hauteur H vaut la demi-largeur à mi-hauteur vaut donc environ 1,177·σ.
Principe variationnelUn principe variationnel est un principe physique s'exprimant sous une forme variationnelle et duquel, dans un domaine précis de la physique (mécanique, optique géométrique, électromagnétisme, etc), de nombreuses propriétés peuvent être déduites. Dans de nombreux cas, la résolution des équations se ramène à la recherche de géodésiques dans un espace approprié (en général l'espace des états du système physique étudié), sachant que ces géodésiques sont les extrémales d'une certaine intégrale représentant la longueur de l'arc joignant les points fixes dans cet espace abstrait.
Rendu volumique directLe rendu volumique direct est une technique utilisée pour afficher une projection 2D d'une série de données 3D. Le rendu volumique direct nécessite que chaque valeur échantillonnée au sein du volume soit associée à une opacité et une couleur. Mathématiquement, cela revient à dire qu'on dispose d'une fonction de transfert : où est la région de l'espace où la fonction est définie, et est l'espace de couleurs utilisé (par exemple ou si les couleurs sont définies par leurs valeurs RGB).
Calcul des variationsLe calcul des variations (ou calcul variationnel) est, en mathématiques et plus précisément en analyse fonctionnelle, un ensemble de méthodes permettant de minimiser une fonctionnelle. Celle-ci, qui est à valeurs réelles, dépend d'une fonction qui est l'inconnue du problème. Il s'agit donc d'un problème de minimisation dans un espace fonctionnel de dimension infinie. Le calcul des variations s'est développé depuis le milieu du jusqu'aujourd'hui ; son dernier avatar est la théorie de la commande optimale, datant de la fin des années 1950.