Processus autorégressifUn processus autorégressif est un modèle de régression pour séries temporelles dans lequel la série est expliquée par ses valeurs passées plutôt que par d'autres variables. Un processus autorégressif d'ordre p, noté AR(p) est donné par : où sont les paramètres du modèle, est une constante et un bruit blanc. En utilisant l'opérateur des retards, on peut l'écrire : Un processus autorégressif d'ordre 1 s'écrit : On peut formuler le processus AR(1) de manière récursive par rapport aux conditions précédentes : En remontant aux valeurs initiales, on aboutit à : Il est à noter que les sommes vont ici jusqu'à l'infini.
Processus stationnairePour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps.
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Pollution sonorethumb|Selon G. Dutilleux (2012), (ici, à titre d'exemple : vue de la circulation automobile urbaine à Bangkok, source majeure de nuisances sonores. thumb|L'échangeur de Daussoulx en Belgique ; autre exemple de source de nuisances sonores. La notion de pollution sonore regroupe généralement des nuisances sonores, et des pollutions induites par le son devenu dans certaines circonstances un « altéragène physique » pour l'être humain ou les écosystèmes.
AutocorrélationL'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation.
Réglementation sur les nuisances sonoresLa réglémentation sur les nuisances sonores comprend des lois ou directives liées à l'émission de bruit, établies par des niveaux de gouvernements nationaux, d'états ou provinciaux et municipaux. Après le grand tournant de l'acte américain de contrôle des nuisances sonores, d'autres gouvernements locaux et d'état établissent d'autres règles. Une réglementation des nuisances sonores restreint la quantité de bruit, la durée du bruit et la source du bruit. Les restrictions sont généralement valables à certaines heures de la journée.
Sonomètrethumb|Un sonomètre utilisé en extérieur Un sonomètre est un instrument destiné à mesurer le niveau de pression acoustique, une grandeur physique liée au volume sonore. Il s'utilise dans les études de pollution sonore et d'acoustique environnementale pour quantifier le bruit et les nuisances sonores, principalement les bruits industriels et de transports routier, ferroviaire et aérien. En acoustique architecturale et en sonorisation, il sert à évaluer la répartition des niveaux sonores dans les locaux.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Perte d'audition due au bruitLa perte auditive due au bruit (NIHL- Noise Induced Hearing Loss) est la perte irrémédiable d'audition due à l'exposition à des sons trop forts. Cette perte d'audition peut survenir subitement après un traumatisme sonore aigu, ou insidieusement à travers le temps, à la suite de multiples expositions à des sons trop forts. La perte d'audition associée à l'âge, la presbyacousie, est en réalité fortement liée à la perte auditive due au bruit, surtout dans le cas d'une exposition au bruit pendant la jeunesse.
Processus de Poissonvignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).