Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Continuous wavelet transformIn mathematics, the continuous wavelet transform (CWT) is a formal (i.e., non-numerical) tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously. The continuous wavelet transform of a function at a scale (a>0) and translational value is expressed by the following integral where is a continuous function in both the time domain and the frequency domain called the mother wavelet and the overline represents operation of complex conjugate.
Vitesse angulaireEn mécanique, la ou est une grandeur physique qui représente le taux de variation d'un angle par rapport au temps. C'est l'analogue de la vitesse de translation pour un mouvement de rotation. La vitesse angulaire est définie comme la dérivée par rapport au temps de la position angulaire de l'objet en rotation : Si on dérive une nouvelle fois la vitesse angulaire, on obtient l'accélération angulaire.
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
Morlet waveletIn mathematics, the Morlet wavelet (or Gabor wavelet) is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing and vision. Wavelet#History In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off between spatial and frequency resolution.
Vecteur vitesseLe vecteur vitesse, nommé parfois vélocité, est une notion de physique qui à la différence de la vitesse comprend un déplacement vers un point. Par exemple, une voiture a une vitesse de 60 km/h mais a une vélocité de 60 km/h vers le nord, le nord étant un point de référence ou de destination pour la voiture. Le terme vélocité est tiré des mots latins velocitas et velox signifiant respectivement rapidité, vitesse, et rapide, prompt, véloce, mots ayant eux-mêmes une origine obscure, mais supposé étant lié à la racine proto-indo-européenne wegh- signifiant "aller, bouger," et "transport dans un véhicule".
Moment cinétiqueEn mécanique classique, le moment cinétique (ou moment angulaire par anglicisme) d'un point matériel M par rapport à un point O est le moment de la quantité de mouvement par rapport au point O, c'est-à-dire le produit vectoriel : Le moment cinétique d'un système matériel est la somme des moments cinétiques (par rapport au même point O) des points matériels constituant le système : Cette grandeur, considérée dans un référentiel galiléen, dépend du choix de l'origine O, par suite, il n'est pas possible de com
Accélération angulaireEn physique, l'accélération angulaire est la variation de la vitesse angulaire au cours du temps. En unités dérivées du Système international, l'accélération angulaire s'exprime en radians par seconde carrée (). L'accélération angulaire est une grandeur physique fondamentale pour caractériser le mouvement de rotation. L'accélération est la première dérivée par rapport au temps (dérivée temporelle) de la vitesse angulaire, et la seconde dérivée temporelle de la position angulaire.