Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
CinématiqueEn physique, la cinématique (du grec kinêma, le mouvement) est l'étude des mouvements indépendamment des causes qui les produisent, ou, plus exactement, l'étude de tous les mouvements possibles. À côté de la notion d'espace qui est l'objet de la géométrie, la cinématique introduit la notion de temps. À ne pas confondre avec la , un terme plus général qui concerne la vitesse et les mécanismes d'une grande variété de processus ; en mécanique, cinétique est utilisé comme adjectif pour qualifier deux grandeurs impliquant aussi la masse : le moment cinétique et l'énergie cinétique.
Interaction faiblethumb|right|330px|L'interaction faible déclenche la nucléosynthèse dans les étoiles. L'interaction faible (aussi appelée force faible et parfois force nucléaire faible) est l'une des quatre interactions fondamentales de la nature, les trois autres étant les interactions électromagnétique, forte et gravitationnelle. Elle est responsable de la désintégration radioactive de particules subatomiques et est à l'origine de la fusion nucléaire dans les étoiles.
Accélération angulaireEn physique, l'accélération angulaire est la variation de la vitesse angulaire au cours du temps. En unités dérivées du Système international, l'accélération angulaire s'exprime en radians par seconde carrée (). L'accélération angulaire est une grandeur physique fondamentale pour caractériser le mouvement de rotation. L'accélération est la première dérivée par rapport au temps (dérivée temporelle) de la vitesse angulaire, et la seconde dérivée temporelle de la position angulaire.
Théorie de Fermi de la désintégration βthumb|360px|La décroissance β− dans un noyau atomique (l'antineutrino associé est omis).En bas à droite est représentée la décroissance bêta du neutron libre.Dans les deux processus, l'émission intermédiaire d'un boson virtuel W- (qui décroit ensuite en un électron et un antineutrino) n'est pas montrée. En physique des particules, l'interaction de Fermi (aussi connue comme la théorie de Fermi de la désintégration β) est une explication de la radioactivité β, proposée par Enrico Fermi en 1933.
État solidevignette|Solide en laiton conçu par Piet Hein prenant la forme d'un superœuf.|alt=Superœuf solide de couleur dorée posé sur une surface indéfinissable. L’état solide est un état de la matière caractérisé par l'absence de liberté entre les molécules ou les ions (métaux par exemple). Les critères macroscopiques de la matière à l'état solide sont : le solide a une forme propre ; le solide a un volume propre. Si un objet solide est ferme, c'est grâce aux liaisons entre les atomes, ions ou molécules composants du solide.
Science des surfacesLa science des surfaces est une section de la science des matériaux consacrée à l'étude des phénomènes physiques et chimiques qui se produisent à l' entre deux phases ou entre une phase et le vide. Les propriétés de la matière en surface sont en effet distinctes de celles du cœur des matériaux (bulk). Par exemple, la coordinence des atomes en surface est inférieure à celle des atomes du reste du matériau ce qui induit une réactivité particulière de ces derniers.
Mécanique célestethumb|Paramètres d'une orbite elliptique. La mécanique céleste décrit le mouvement d'objets astronomiques tels que les étoiles et planètes à l'aide de théories physiques et mathématiques. Les domaines de la physique les plus directement concernés sont la cinématique et la dynamique (classique ou relativiste). Dans l'Antiquité, on distingue la mécanique céleste de la mécanique terrestre, les deux mondes étant considérés comme étant régis par des lois complètement différentes (ici-bas, les « choses » « tombent », là-haut elles se « promènent »).
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.