Suite aléatoirevignette|Cette suite est-elle aléatoire ? En mathématiques, une suite aléatoire, ou suite infinie aléatoire, est une suite de symboles d'un alphabet ne possédant aucune structure, régularité, ou règle de prédiction identifiable. Une telle suite correspond à la notion intuitive de nombres tirés au hasard. La caractérisation mathématique de cette notion est extrêmement difficile, et a fait l'objet d'études et de débats tout au long du . Une première tentative de définition mathématique (insatisfaisante) a été réalisée en 1919 par Richard von Mises.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Convolutional codeIn telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.
Turbo codeTurbo code est le nom générique d'un code correcteur imaginé dans les années 1990, qui permet de s'approcher aussi près qu'on le souhaite de la limite de Shannon. Les turbo codes représentent une percée majeure dans le domaine des communications numériques. Ils sont utilisés dans de nombreux standards de téléphonie mobile (UMTS, LTE), de communications par satellites (Inmarsat, DVB-RCS) ou de courants porteurs en ligne. Leur inventeur est Claude Berrou qui breveta cette technologie pour le compte de France Télécom et TDF.
Code d'effacementEn théorie de l'information, un code d'effacement est un code de correction d'erreur directe pour le canal binaire d'effacement qui transforme un message composé de symboles en un message plus long composé de symboles tel que le message original peut être retrouvé à partir d'un sous-ensemble de ces symboles. La fraction est appelé « débit du code ». La fraction , où représente le nombre de symboles requis pour restaurer le message est appelée efficacité de la réception.
Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.
Fraction (mathématiques)thumb|Trois quarts de gâteau, un quart ayant été retiré. En mathématiques, une fraction est un moyen d'écrire un nombre rationnel sous la forme d'un quotient de deux entiers. La fraction a/b désigne le quotient de a par b (b≠0). Dans cette fraction, a est appelé le numérateur et b le dénominateur. Une fraction représente un partage, le dénominateur représente le nombre de parts égales faites dans une unité et son numérateur représente le nombre de parts prises dans l'unité Un nombre que l'on peut représenter par des fractions de nombres entiers est appelé nombre rationnel.
Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Taux d'erreurLe taux d'erreur ou B.E.R., abréviation de l'expression anglaise Bit Error Rate, désigne une valeur, relative au taux d'erreur, mesurée à la réception d'une transmission numérique, relative au niveau d'atténuation et/ou de perturbation d'un signal transmis. Ce phénomène survient également lors de l'échantillonnage (numérisation), lors de la lecture et de la sauvegarde des données (CD-R, DVD-R, disque dur, RAM...). Ce taux détermine le nombre d'erreurs apparues entre la modulation et juste après la démodulation du signal.