Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Robotvignette|Atlas (2013), robot androïde de Boston Dynamics vignette|Bras manipulateurs dans un laboratoire (2009) vignette|NAO (2006), robot humanoïde éducatif d'Aldebaran Robotics vignette|DER1 (2005), un actroïde d'accueil vignette|Roomba (2002), un robot ménager Un robot est un dispositif mécatronique (alliant mécanique, électronique et informatique) conçu pour accomplir automatiquement des tâches imitant ou reproduisant, dans un domaine précis, des actions humaines.
Motion controlMotion control is a sub-field of automation, encompassing the systems or sub-systems involved in moving parts of machines in a controlled manner. Motion control systems are extensively used in a variety of fields for automation purposes, including precision engineering, micromanufacturing, biotechnology, and nanotechnology. The main components involved typically include a motion controller, an energy amplifier, and one or more prime movers or actuators. Motion control may be open loop or closed loop.
Équation différentielle autonomeUne équation différentielle autonome est un cas particulier important d'équation différentielle où la variable n'apparaît pas dans l'équation fonctionnelle. C'est une équation de la forme : Les lois de la physique s'appliquent en général à des fonctions du temps, et se présentent sous forme d'équations différentielles autonomes, ce qui manifeste l'invariance de ces lois dans le temps. Ainsi, si un système autonome revient à sa position initiale au bout d'un intervalle de temps , il connaît dès lors une évolution périodique de période .
BoostingLe boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.
Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Structural stabilityIn mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Espace des phasesdroite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse. Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système.