Espace de longueurEn mathématiques, un espace de longueur est un espace métrique particulier, qui généralise la notion de variété riemannienne : la distance y est définie par une fonction vérifiant une axiomatique la rendant proche de l'idée concrète de distance. Les espaces de longueur ont été étudiés au début du par et sous le nom d'espaces métriques intrinsèques, et réintroduits plus récemment par Mikhaïl Gromov. Soit X un espace topologique. Une courbe dans X est une application continue , où I est un intervalle de .
Mémoire spatialevignette|La mémoire spatiale est nécessaire pour naviguer dans un environnement. La mémoire spatiale est la partie de la mémoire d'un individu responsable de l'enregistrement des informations concernant l'espace environnant et l'orientation spatiale de l'individu dans celui-ci. La mémoire spatiale est ainsi requise pour la navigation spatiale dans un lieu connu, comme dans un quartier familier. Elle est étudiée en neuroscience (chez le rat) et en psychologie cognitive (chez l'homme).
Geodesics in general relativityIn general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Srinivasa Ramanujanvignette|thumbtime=566|start=567|end=610|alt=documentaire indien en anglais|upright=1.5|Extrait de Srinivasa Ramanujan- The Mathematician & His Legacy (Srinivasa Ramanujan : le mathématicien et son héritage), un documentaire produit par le Ministère des Affaires étrangères de l'Inde ; on y voit les cahiers de Ramanujan, conservés à l'université de Madras. Srinivasa Ramanujan (en tamoul : சீனிவாச இராமானுஜன் ; ), né le à Erode et mort le à Kumbakonam, est un mathématicien indien.
Base de données spatialesUne base de données spatiales est une base de données optimisée pour stocker et interroger des données reliées à des objets référencés géographiquement, y compris des points, les lignes et des polygones. Alors que les bases de données classiques peuvent comprendre différents types de données numériques et caractères, des fonctions additionnelles ont besoin d'être ajoutées pour traiter les types de données spatiales. Celles-ci sont typiquement appelées géométrie ou caractère.
Analyse spatialevignette|200px|Carte de cas de choléra pendant l'épidémie de 1854 à Londres L'analyse spatiale est une approche géographique qui étudie les localisations et les interactions spatiales en tant que composantes actives des fonctionnements sociétaux. Elle part du postulat selon lequel l'espace est acteur organisé. C'est une science nomothétique donc elle vise à proposer une approche modélisée de l'espace géographique en mettant en évidence des formes récurrentes d'organisation spatiales et des théories, notamment à travers diverses notions-clés : distance, réseaux, structure, .
Espace completEn mathématiques, un espace métrique complet est un espace métrique dans lequel toute suite de Cauchy converge. La propriété de complétude dépend de la distance. Il est donc important de toujours préciser la distance que l'on prend quand on parle d'espace complet. Intuitivement, un espace est complet s'il « n'a pas de trou », s'il « n'a aucun point manquant ». Par exemple, les nombres rationnels ne forment pas un espace complet, puisque n'y figure pas alors qu'il existe une suite de Cauchy de nombres rationnels ayant cette limite.
Fundamental polygonIn mathematics, a fundamental polygon can be defined for every compact Riemann surface of genus greater than 0. It encodes not only the topology of the surface through its fundamental group but also determines the Riemann surface up to conformal equivalence. By the uniformization theorem, every compact Riemann surface has simply connected universal covering surface given by exactly one of the following: the Riemann sphere, the complex plane, the unit disk D or equivalently the upper half-plane H.