Immeuble de Bruhat-TitsEn mathématiques, un immeuble, aussi appelé l’immeuble Tits et l’immeuble Bruhat-Tits (nommé d'après François Bruhat et Jacques Tits) est une structure combinatoire et géométrique qui généralise simultanément certains aspects des variétés de drapeaux, des plans projectifs finis et des espaces riemanniens symétriques. Introduite par Jacques Tits comme moyen de comprendre la structure des groupes exceptionnels de type de Lie, la théorie a également été utilisée pour l'étude de la géométrie et de la topologie des espaces homogènes des groupes de Lie p-adiques et leurs sous-groupes de symétrie discrets, de la même manière que les arbres ont été utilisés pour étudier les groupes libres.
Thompson groupsIn mathematics, the Thompson groups (also called Thompson's groups, vagabond groups or chameleon groups) are three groups, commonly denoted , that were introduced by Richard Thompson in some unpublished handwritten notes in 1965 as a possible counterexample to the von Neumann conjecture. Of the three, F is the most widely studied, and is sometimes referred to as the Thompson group or Thompson's group. The Thompson groups, and F in particular, have a collection of unusual properties that have made them counterexamples to many general conjectures in group theory.
Réseau (sous-groupe discret)En théorie des groupes le terme réseau désigne un sous-groupe d'un groupe topologique localement compact vérifiant les conditions suivantes : est discret dans , ce qui est équivalent à la condition qu'il existe un voisinage ouvert de l'identité de tel que ; est de covolume fini dans , c'est-à-dire qu'il existe sur l'espace quotient une mesure Borélienne de masse totale finie et invariante par (agissant par translations à droite). Un réseau est dit uniforme quand le quotient est compact. On dit alors que est un réseau de .
OrbifoldEn mathématiques, un orbifold (parfois appelé aussi orbivariété) est une généralisation de la notion de variété contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Ichirō Satake en 1956 sous le nom de V-manifolds. Pour passer de la notion de variété (différentiable) à celle d'orbifold, on ajoute comme modèles locaux tous les quotients d'ouverts de par l'action de groupes finis. L'intérêt pour ces objets a été ravivé considérablement à la fin des années 70 par William Thurston en relation avec sa conjecture de géométrisation.
Théorie géométrique des groupesLa théorie géométrique des groupes est un domaine des mathématiques pour l'étude des groupes de type fini à travers les connexions entre les propriétés algébriques de ces groupes et les propriétés topologiques et géométriques des espaces sur lesquels ils opèrent. Les groupes sont vus comme des ensembles de symétries ou d'applications continues sur ces espaces. Une autre idée importante de la théorie géométrique des groupes est de considérer les groupes de type fini eux-mêmes comme des objets géométriques, généralement via le graphe de Cayley du groupe étudié.
Elementary amenable groupIn mathematics, a group is called elementary amenable if it can be built up from finite groups and abelian groups by a sequence of simple operations that result in amenable groups when applied to amenable groups. Since finite groups and abelian groups are amenable, every elementary amenable group is amenable - however, the converse is not true.
Linear groupIn mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful, finite-dimensional representation over K). Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class.
Groupe moyennableEn mathématiques, un groupe moyennable (parfois appelé groupe amenable par calque de l'anglais) est un groupe topologique localement compact qu'on peut munir d'une opération de « moyenne » sur les fonctions bornées, invariante par les translations par les éléments du groupe. La définition initiale, donnée à partir d'une mesure (simplement additive) des sous-ensembles du groupe, fut proposée par John von Neumann en 1929 à la suite de son analyse du paradoxe de Banach-Tarski.
Groupe de symétrieLe groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.
Jacques TitsJacques Tits, né le à Uccle et mort le dans le , est un mathématicien français, d'origine belge. Professeur à l'université libre de Bruxelles (nommé à ), il écrit et coécrit un grand nombre d'articles sur des sujets variés, principalement en géométrie et en algèbre. Il effectue l’essentiel de sa carrière au Collège de France à Paris. Il est récompensé en 2008 par le prix Abel, l’une des récompenses les plus prestigieuse en mathématiques. Tits a découvert les mathématiques grâce à son père, lui-même mathématicien, en consultant les ouvrages de sa bibliothèque.