Opérateur non bornéEn analyse fonctionnelle, un opérateur non borné est une application linéaire partiellement définie. Plus précisément, soient X, Y deux espaces vectoriels. Un tel opérateur est donné par un sous-espace dom(T) de X et une application linéaire dont l'ensemble de définition est dom(T) et l'ensemble d'arrivée est Y. Considérons X = Y = L(R) et l'espace de Sobolev H(R) des fonctions de carré intégrable dont la dérivée au sens des distributions appartient, elle aussi, à L(R).
P-completEn théorie de la complexité computationnelle, un problème de décision est P-complet (c.-à-d. complet pour la classe de complexité P des problèmes en temps polynomial) s'il est dans P et tout problème dans P peut y être réduit par une réduction en espace logarithmique (d'autres réductions sont aussi utilisées, comme NC). La notion de problème de décision P-complet est utile pour déterminer : quels problèmes sont difficiles à paralléliser efficacement (si on utilise des réductions NC), quels problèmes sont difficiles à résoudre dans un espace limité (si on utilise des réductions en espace logarithmique).
Logic in computer scienceLogic in computer science covers the overlap between the field of logic and that of computer science. The topic can essentially be divided into three main areas: Theoretical foundations and analysis Use of computer technology to aid logicians Use of concepts from logic for computer applications Logic plays a fundamental role in computer science. Some of the key areas of logic that are particularly significant are computability theory (formerly called recursion theory), modal logic and .
Histoire de la logiqueL'histoire de la logique, en Occident, prend ses racines dans la philosophie et les mathématiques de la Grèce antique pour se développer en richesse au . Des développements parallèles ont notamment eu lieu en Chine et en Inde. Le développement de la logique dans le monde arabo-musulman s'intègre à celui de l'Europe, du fait de leur proximité. La logique chinoise est longtemps restée isolée des développements de la logique en Europe et dans le monde arabo-musulman. 400 ans avant notre ère, la fondation de l'école du moïsme est attribuée à Mozi.
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Functional completenessIn logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.
Opération bit à bitEn logique, une opération bit à bit est un calcul manipulant les données directement au niveau des bits, selon une arithmétique booléenne. Elles sont utiles dès qu'il s'agit de manipuler les données à bas niveau : codages, couches basses du réseau (par exemple TCP/IP), cryptographie, où elles permettent également les opérations sur les corps finis de caractéristique 2. Les opérations bit à bit courantes comprennent des opérations logiques bit par bit et des opérations de décalage des bits, vers la droite ou vers la gauche.
Négation logiqueEn logique et en mathématiques, la négation est un opérateur logique unaire. Il sert à nier une proposition. On note la négation d'une proposition P de diverses manières dont : ¬P (utilisée dans cet article); Non P ; Ces formulations se lisent « négation de P » ou plus simplement « non P ». Dans l'interprétation par des tables de vérité, la proposition ¬P est vraie quand P est fausse et elle est fausse quand P est vraie. La table de vérité s'écrit simplement : ou On remarque alors que où dénote une contradiction.
SyllogismeEn logique, le syllogisme est un raisonnement logique mettant en relation au moins trois propositions : deux ou plus d'entre elles, appelées « prémisses », conduisent à une « conclusion ». Aristote a été le premier à le formaliser dans son Organon. Ces propositions sont généralement exprimées avec uniquement des prédicats unaires et relèvent donc de la logique monadique du premier ordre.