Primitive cryptographiqueUne primitive cryptographique est un algorithme cryptographique de bas niveau, bien documenté, et sur la base duquel est bâti tout système de sécurité informatique. Ces algorithmes fournissent notamment des fonctions de hachage cryptographique et de chiffrement. À la création d’un système cryptographique (ou cryptosystème), le concepteur se fonde sur des briques appelées « primitives cryptographiques ». Pour cette raison les primitives cryptographiques sont conçues pour effectuer une tâche précise et ce de la façon la plus fiable possible.
Parité d'une fonctionEn mathématiques, la parité d'une fonction d'une variable réelle, complexe ou vectorielle est une propriété qui requiert d'abord la symétrie du domaine de définition par rapport à l'origine, puis s'exprime par l'une ou l'autre des relations suivantes : fonction paire : pour tout x du domaine de définition, f (−x) = f (x) ; fonction impaire : pour tout x du domaine de définition, f (−x) = −f (x).
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Cryptographie post-quantiqueLa cryptographie post-quantique est une branche de la cryptographie visant à garantir la sécurité de l'information face à un attaquant disposant d'un calculateur quantique. Cette discipline est distincte de la cryptographie quantique, qui vise à construire des algorithmes cryptographiques utilisant des propriétés physiques, plutôt que mathématiques, pour garantir la sécurité. En l'effet, les algorithmes quantiques de Shor, de Grover et de Simon étendent les capacités par rapport à un attaquant ne disposant que d'un ordinateur classique.
Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Cryptographie sur les courbes elliptiquesLa cryptographie sur les courbes elliptiques (en anglais, elliptic curve cryptography ou ECC) regroupe un ensemble de techniques cryptographiques qui utilisent une ou plusieurs propriétés des courbes elliptiques, ou plus généralement d'une variété abélienne. L'usage des courbes elliptiques en cryptographie a été suggéré, de manière indépendante, par Neal Koblitz et Victor S. Miller en 1985.
Algebra of random variablesThe algebra of random variables in statistics, provides rules for the symbolic manipulation of random variables, while avoiding delving too deeply into the mathematically sophisticated ideas of probability theory. Its symbolism allows the treatment of sums, products, ratios and general functions of random variables, as well as dealing with operations such as finding the probability distributions and the expectations (or expected values), variances and covariances of such combinations.
Mise en gageEn cryptologie, la mise en gage () est un processus qui permet à une personne de « mettre en gage » une valeur (ou un énoncé) tout en la maintenant cachée aux autres, avec la possibilité de révéler cette valeur plus tard en prouvant que c'est bien la valeur qui avait été mise en gage. La mise en gage est conçue de telle sorte que la personne est liée à la valeur mise en gage. En pratique, la mise en gage se fait en calculant une valeur de mise en gage à partir de la valeur que l'on veut cacher et en communiquant cette valeur de mise en gage à un destinataire.