Physique classiqueLa physique classique désigne d'une manière générale l'ensemble des théories physiques antérieures à l'avènement de théories plus récentes, plus complètes, ou dotées d'un domaine d'application plus vaste. Lorsqu'une théorie physique qui a cours actuellement est considérée comme moderne, et si son introduction a représenté un majeur, les théories précédentes (ou les théories nouvelles basées sur le paradigme antérieur) seront souvent considérées comme relevant de la physique « classique ».
ThéorieUne théorie (du grec theoria, « contempler, observer, examiner ») est un ensemble cohérent, si elle prétend à la scientificité, d'explications, de notions ou d'idées sur un sujet précis, pouvant inclure des lois et des hypothèses, induites par l'accumulation de faits provenant de l'observation, l'expérimentation ou, dans le cas des mathématiques, déduites d'une base axiomatique donnée : théorie des matrices, des torseurs, des probabilités.
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Théorie des modèlesLa théorie des modèles est une branche de la logique mathématique qui traite de la construction et de la classification des structures. Elle définit en particulier les modèles des théories axiomatiques, l'objectif étant d'interpréter les structures syntaxiques (termes, formules, démonstrations...) dans des structures mathématiques (ensemble des entiers naturels, groupes, univers...) de façon à leur associer des concepts de nature sémantique (comme le sens ou la vérité).
Physique expérimentalevignette|La physique expérimentale peut parfois recourir à des instruments de très grandes dimensions : ici, construction du détecteur CMS (Compact Muon Solenoid) du Grand collisionneur de hadrons (LHC) au CERN, en 2003. Les techniciens présents en bas de l'image donnent une idée des dimensions réelles de cet ensemble (15 m de diamètre, 21 m de long, pour un poids de 14 000 tonnes) installé 100 mètres sous la surface du sol.
Physique théoriquevignette|Discussion entre physiciens théoriciens à l'École de physique des Houches. La physique théorique est la branche de la physique qui étudie l’aspect théorique des lois physiques et en développe le formalisme mathématique. C'est dans ce domaine que l'on crée les théories, les équations et les constantes en rapport avec la physique. Elle constitue un champ d'études intermédiaire entre la physique expérimentale et les mathématiques, et a souvent contribué au développement de l’une comme de l’autre.
Taille d'effetEn statistique, une taille d'effet est une mesure de la force de l'effet observé d'une variable sur une autre et plus généralement d'une inférence. La taille d'un effet est donc une grandeur statistique descriptive calculée à partir de données observées empiriquement afin de fournir un indice quantitatif de la force de la relation entre les variables et non une statistique inférentielle qui permettrait de conclure ou non si ladite relation observée dans les données existe bien dans la réalité.
ModélisationLa modélisation est la conception et l'utilisation d'un modèle. Selon son objectif (représentation simplifiée, compréhension, prédiction) et les moyens utilisés, la modélisation est dite mathématique, géométrique, 3D, empirique, mécaniste ( modélisation de réseau trophique dans un écosystème), cinématique... Elle nécessite généralement d'être calée par des observations ou mesures faites , lesquelles servent aussi à paramétrer, calibrer ou ajuster le modèle, par exemple en intégrant des facteurs d'influences qui s'avèreraient nécessaires.
Nombre de BernoulliEn mathématiques, les nombres de Bernoulli, notés B (ou parfois b pour ne pas les confondre avec les polynômes de Bernoulli ou avec les nombres de Bell), constituent une suite de nombres rationnels.
Méthodes quantitativesLes méthodes quantitatives sont des méthodes de recherche, utilisant des outils d'analyse mathématiques et statistiques, en vue de décrire, d'expliquer et prédire des phénomènes par le biais de données historiques sous forme de variables mesurables. Elles se distinguent ainsi des méthodes dites qualitatives. Le comptage et la mesure sont des méthodes quantitatives banales. Le résultat de la recherche est un nombre ou un ensemble de nombres. On les présente souvent sous forme de tables, de graphiques...