Exponentiation rapideEn informatique, l'exponentiation rapide est un algorithme utilisé pour calculer rapidement de grandes puissances entières. En anglais, cette méthode est aussi appelée square-and-multiply (« mettre au carré et multiplier »). La première façon de calculer une puissance x est de multiplier x par lui-même n fois. Cependant, il existe des méthodes bien plus efficaces, où le nombre d'opérations nécessaires n'est plus de l'ordre de n mais de l'ordre de .
Ramification groupIn number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension. In mathematics, the ramification theory of valuations studies the set of extensions of a valuation v of a field K to an extension L of K. It is a generalization of the ramification theory of Dedekind domains. The structure of the set of extensions is known better when L/K is Galois.
Corps à un élémentEn mathématiques, et plus précisément en géométrie algébrique, le corps à un élément est le nom donné de manière quelque peu fantaisiste à un objet qui se comporterait comme un corps fini à un seul élément, si un tel corps pouvait exister. Cet objet est noté F1, ou parfois Fun. L'idée est qu'il devrait être possible de construire des théories dans lesquelles les ensembles et les lois de composition (qui constituent les bases de l'algèbre générale) seraient remplacés par d'autres objets plus flexibles.
Corps parfaitEn mathématiques et plus particulièrement en algèbre dans le contexte de la théorie de Galois, un corps parfait est un corps commutatif dont toutes les extensions algébriques sont séparables. Les corps parfaits sont utiles pour la théorie de Galois, car les théorèmes fondateurs, comme le théorème de l'élément primitif ou le théorème fondamental de la théorie de Galois utilisent dans les hypothèses le fait que l'extension considérée est séparable.
Formally real fieldIn mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field. The definition given above is not a first-order definition, as it requires quantifiers over sets. However, the following criteria can be coded as (infinitely many) first-order sentences in the language of fields and are equivalent to the above definition.
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
Virgule flottantevignette|Comme la notation scientifique, le nombre à virgule flottante a une mantisse et un exposant. La virgule flottante est une méthode d'écriture de nombres fréquemment utilisée dans les ordinateurs, équivalente à la notation scientifique en numération binaire. Elle consiste à représenter un nombre par : un signe (égal à −1 ou 1) ; une mantisse (aussi appelée significande) ; et un exposant (entier relatif, généralement borné).
Cryptographiethumb|La machine de Lorenz utilisée par les nazis durant la Seconde Guerre mondiale pour chiffrer les communications militaires de haut niveau entre Berlin et les quartiers-généraux des différentes armées. La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou clés. Elle se distingue de la stéganographie qui fait passer inaperçu un message dans un autre message alors que la cryptographie rend un message supposément inintelligible à autre que qui de droit.
Cryptographie asymétriquevignette|320x320px|Schéma du chiffrement asymétrique: une clé sert à chiffrer et une seconde à déchiffrer La cryptographie asymétrique, ou cryptographie à clé publique est un domaine relativement récent de la cryptographie. Elle permet d'assurer la confidentialité d'une communication, ou d'authentifier les participants, sans que cela repose sur une donnée secrète partagée entre ceux-ci, contrairement à la cryptographie symétrique qui nécessite ce secret partagé préalable.
Cryptographie sur les courbes elliptiquesLa cryptographie sur les courbes elliptiques (en anglais, elliptic curve cryptography ou ECC) regroupe un ensemble de techniques cryptographiques qui utilisent une ou plusieurs propriétés des courbes elliptiques, ou plus généralement d'une variété abélienne. L'usage des courbes elliptiques en cryptographie a été suggéré, de manière indépendante, par Neal Koblitz et Victor S. Miller en 1985.