Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
P (complexité)La classe P, aussi noté parfois PTIME ou DTIME(nO(1)), est une classe très importante de la théorie de la complexité, un domaine de l'informatique théorique et des mathématiques. Par définition, un problème de décision est dans P s'il est décidé par une machine de Turing déterministe en temps polynomial par rapport à la taille de l'entrée. On dit que le problème est décidé en temps polynomial. Les problèmes dans P sont considérés comme « faisables » (feasible en anglais), faciles à résoudre (dans le sens où on peut le faire relativement rapidement).
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Habileté de construction visuo-spatialeL'habileté de construction visuo-spatiale ou visuoconstruction désigne l’ensemble des processus du cerveau qui permettent d'analyser, de comprendre et de se représenter l’espace (l'environnement) en deux ou trois dimensions. Parmi les processus nécessaires pour y arriver, on note l'imagerie et la navigation mentale, l'évaluation des distances et de la profondeur ainsi que la construction visuo-spatiale. Plus spécifiquement, le processus de construction visuo-spatiale ou la visuo-construction réfère à la capacité à organiser des parties afin de produire une forme.
Mémoire spatialevignette|La mémoire spatiale est nécessaire pour naviguer dans un environnement. La mémoire spatiale est la partie de la mémoire d'un individu responsable de l'enregistrement des informations concernant l'espace environnant et l'orientation spatiale de l'individu dans celui-ci. La mémoire spatiale est ainsi requise pour la navigation spatiale dans un lieu connu, comme dans un quartier familier. Elle est étudiée en neuroscience (chez le rat) et en psychologie cognitive (chez l'homme).
Spatial cognitionSpatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals including humans behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines (such as cognitive psychology, neuroscience, artificial intelligence, geographic information science, cartography, etc.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
ParisParis () est la capitale de la France. Divisée en vingt arrondissements, elle est le chef-lieu de la région Île-de-France et le siège de la métropole du Grand Paris. Elle est établie au centre du Bassin parisien, sur une boucle de la Seine, entre les confluents avec la Marne et l'Oise. Occupé depuis le avant notre ère par le peuple gaulois des Parisii, le site original de Lutèce prend le nom de Paris vers 310 puis se développe par enceintes successives.