Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.
Formule atomiqueEn logique mathématique, une formule atomique ou atome est une formule qui ne contient pas de sous-formules propres. La structure d'une formule atomique dépend de la logique considérée, p. ex. en logique des propositions, les formules atomiques sont les variables propositionnelles. Les atomes sont les formules les plus simples dans un système logique et servent à construire les formules les plus générales.
Terme (logique)Un terme est une expression de base du calcul des prédicats, de l'algèbre, notamment de l'algèbre universelle, et du calcul formel, des systèmes de réécriture et de l'unification. C'est l'objet produit par une analyse syntaxique. Sa principale caractéristique est d'être homogène (il n'y a que des opérations de base et pas d'opérations logiques) et de décrire l'agencement des opérations de base. Un terme est parfois appelé une formule du premier ordre.
Horn-satisfiabilitéUne formule de Horn est une conjonction de clauses contenant chacune au plus un littéral positif, c'est-à-dire une conjonction de clauses de Horn. Puisque le problème SAT est NP-complet, donc vérifiable en temps polynomial et plus difficile que tout problème dans NP, il est naturel de rechercher des problèmes proches mais plus "faciles" à résoudre. C'est notamment le cas de la satisfaisabilité d'une formule de Horn, puisqu'il s'agit d'un problème P-complet, plus difficile que tout problème dans P.
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Formule booléenne quantifiéeEn théorie de la complexité, en informatique théorique, en logique mathématique, une formule booléenne quantifiée (ou formule QBF pour quantified binary formula en anglais) est une formule de la logique propositionnelle où les variables propositionnelles sont quantifiées. Par exemple, est une formule booléenne quantifiée et se lit « pour toute valeur booléenne x, il existe une valeur booléenne y et une valeur booléenne z telles que ((x ou z) et y) ».
Formule logiqueEn logique on dit d’une suite finie de lettres qu’elle est une formule, ou parfois formule bien formée, d'un langage logique donné lorsqu’elle peut être construite en appliquant une combinaison des règles de la grammaire formelle associée, on parle de la syntaxe du langage. Informellement les formules sont les assemblages de lettres auxquels il est possible de donner une signification en termes de valeur de vérité (Vrai, ou Faux). Les formules logiques sont l'équivalent des phrases du langage naturel.
Satisfiability modulo theoriesEn informatique et en logique mathématique, un problème de satisfiabilité modulo des théories (SMT) est un problème de décision pour des formules de logique du premier ordre avec égalité (sans quantificateurs), combinées à des théories dans lesquelles sont exprimées certains symboles de prédicat et/ou certaines fonctions. Des exemples de théories incluent la théorie des nombres réels, la théorie de l’arithmétique linéaire, des théories de diverses structures de données comme les listes, les tableaux ou les tableaux de bits, ainsi que des combinaisons de celles-ci.
Théorème de complétude de GödelEn logique mathématique, le théorème de complétude du calcul des prédicats du premier ordre dresse une correspondance entre la sémantique et les démonstrations d'un système de déduction en logique du premier ordre. En termes intuitifs le théorème de complétude construit un pont entre vérité et démontrabilité formelle : tout énoncé vrai est démontrable.
Méthode des tableauxvignette|200px|Représentation graphique d'un tableau propositionnel partiellement construit En théorie de la démonstration, les tableaux sémantiques sont une méthode de résolution du problème de la décision pour le calcul des propositions et les logiques apparentées, ainsi qu'une méthode de preuve pour la logique du premier ordre. La méthode des tableaux peut également déterminer la satisfiabilité des ensembles finis de formules de diverses logiques. C'est la méthode de preuve la plus populaire pour les logiques modales (Girle 2000).