Mécanique de la ruptureLa catastrophe du Vol 587 American Airlines s'explique par la rupture de la dérive de l'appareil.|vignette La mécanique de la rupture tend à définir une propriété du matériau qui peut se traduire par sa résistance à la rupture fragile (fracture) ou ductile. Car si les structures sont calculées pour que les contraintes nominales ne dépassent pas, en règle générale, la limite d'élasticité du matériau et soient donc par voie de conséquence à l'abri de la ruine par rupture de type ductile ; elles ne sont pas systématiquement à l'abri d'une ruine causée par la présence d'une fissure préexistante à la mise en service ou créée en service par fatigue (comme lors de la catastrophe ferroviaire de Meudon) ou par corrosion sous contrainte.
Rupture (matériau)thumb|Courbe de traction idéale d'un matériau ductile thumb|Courbe de traction typique pour un matériau fragile En science des matériaux, la rupture ou fracture d'un matériau est la séparation, partielle (comme une crique ou une fissure ou une brisure) ou complète, en deux ou plusieurs pièces sous l'action d'une contrainte. Une rupture peut être souhaitée par le concepteur de la pièce comme dans le cas de la conception de dispositifs de sécurité ou au contraire celui-ci cherche à éviter cette rupture en mettant en adéquation la fonction de cette pièce avec les dimensionnements et choix des matériaux utilisés et des procédés de fabrication.
TénacitéLa ténacité est la capacité d'un matériau à résister à la propagation d'une fissure. On peut aussi définir la ténacité comme étant la quantité d'énergie qu'un matériau peut absorber avant de rompre, mais il s'agit d'une définition anglophone. En anglais, on fait la différence entre « toughness », l'énergie de déformation à rupture par unité de volume (, ce qui correspond aussi à des pascals) et « », la ténacité au sens de résistance à la propagation de fissure.
Groupe de symétrieLe groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.
Symétrie (transformation géométrique)Une symétrie géométrique est une transformation géométrique involutive qui conserve le parallélisme. Parmi les symétries courantes, on peut citer la réflexion et la symétrie centrale. Une symétrie géométrique est un cas particulier de symétrie. Il existe plusieurs sortes de symétries dans le plan ou dans l’espace. Remarque : Le terme de symétrie possède aussi un autre sens en mathématiques. Dans l'expression groupe de symétrie, une symétrie désigne une isométrie quelconque.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Réflexion (mathématiques)En mathématiques, une réflexion ou symétrie axiale du plan euclidien est une symétrie orthogonale par rapport à une droite (droite vectorielle s'il s'agit d'un plan vectoriel euclidien). Elle constitue alors une symétrie axiale orthogonale. Plus généralement, dans un espace euclidien quelconque, une réflexion est une symétrie orthogonale par rapport à un hyperplan, c'est-à-dire à un sous-espace de codimension 1. En dimension 3, il s'agit donc d'une symétrie orthogonale par rapport à un plan.
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Circular symmetryIn geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the special orthogonal group SO(2), and unitary group U(1). Reflective circular symmetry is isomorphic with the orthogonal group O(2). A 2-dimensional object with circular symmetry would consist of concentric circles and annular domains.
Symmetry in biologySymmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern. Internal features can also show symmetry, for example the tubes in the human body (responsible for transporting gases, nutrients, and waste products) which are cylindrical and have several planes of symmetry.