Euclidean distanceIn mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
Espace euclidienEn mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.
Distance (mathématiques)En mathématiques, une distance est une application qui formalise l'idée intuitive de distance, c'est-à-dire la longueur qui sépare deux points. C'est par l'analyse des principales propriétés de la distance usuelle que Fréchet introduit la notion d'espace métrique, développée ensuite par Hausdorff. Elle introduit un langage géométrique dans de nombreuses questions d'analyse et de théorie des nombres.
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.
Routagethumb|Exemple de routage dans un réseau. Le routage est le mécanisme par lequel des chemins sont sélectionnés dans un réseau pour acheminer les données d'un expéditeur jusqu'à un ou plusieurs destinataires. Le routage est une tâche exécutée dans de nombreux réseaux, tels que le réseau téléphonique, les réseaux de données électroniques comme Internet, et les réseaux de transports. Sa performance est importante dans les réseaux décentralisés, c'est-à-dire où l'information n'est pas distribuée par une seule source, mais échangée entre des agents indépendants.
Espace de BanachEn mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.
Espace pseudo-euclidienEn mathématiques, et plus particulièrement en géométrie, un espace pseudo-euclidien est une extension du concept d'espace euclidien, c'est-à-dire que c'est un espace vectoriel muni d'une forme bilinéaire (qui définirait la métrique dans le cas d'un espace euclidien), mais cette forme n'est pas définie positive, ni même positive. L'espace de Minkowski est un exemple d'espace pseudo-euclidien. Dans les espaces euclidiens, les notions de métrique et d'orthogonalité sont construites par l'adjonction d'un produit scalaire à un espace vectoriel réel de dimension finie.
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).
Vecteur de distancesLes protocoles de routage à vecteur de distances (distance vector) sont des protocoles permettant de construire des tables de routages où aucun routeur ne possède la vision globale du réseau, la diffusion des routes se faisant de proche en proche. Le terme « vecteur de distances » vient du fait que le protocole manipule des vecteurs (des tableaux) de distances vers les autres nœuds du réseau. La « distance » en question est le nombre de sauts (hops) permettant d'atteindre les routeurs voisins.
Routing Information Protocol(RIP, protocole d'information de routage) est un protocole de routage IP de type Vector Distance (à vecteur de distances) s'appuyant sur l'algorithme de détermination des routes décentralisé Bellman-Ford. Il permet à chaque routeur de communiquer avec les routeurs voisins. La métrique utilisée est la distance qui sépare un routeur d'un réseau IP déterminé quant au nombre de sauts (ou « hops » en anglais). Pour chaque réseau IP connu, chaque routeur conserve l'adresse du routeur voisin dont la métrique est la plus petite.