Connexité (mathématiques)La connexité est une notion de topologie qui formalise le concept d'« objet d'un seul tenant ». Un objet est dit connexe s'il est fait d'un seul « morceau ». Dans le cas contraire, chacun des morceaux est une composante connexe de l'objet étudié. Soit un espace topologique E. Les quatre propositions suivantes sont équivalentes : E n'est pas la réunion de deux ouverts non vides disjoints ; E n'est pas la réunion de deux fermés non vides disjoints ; les seuls ouverts-fermés de E sont ∅ et E ; toute application continue de E dans un ensemble à deux éléments muni de la topologie discrète est constante.
Empilement compactUn empilement compact d'une collection d'objets est un agencement de ces objets de telle sorte qu'ils occupent le moins d'espace possible (donc qu'ils laissent le moins de vide possible). Le problème peut se poser dans un espace (euclidien ou non) de dimension n quelconque, les objets étant eux-mêmes de dimension n. Les applications pratiques sont concernées par les cas (plan et autres surfaces) et (espace ordinaire).
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Théorie des graphes extrémauxEn théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
Théorème de Kőnig (théorie des graphes)vignette|Exemple d'un graphe biparti avec un couplage maximum (en bleu) et une couverture de sommets minimale (en rouge), tous les deux de taille 6. Le théorème de Kőnig est un résultat de théorie des graphes qui dit que, dans un graphe biparti, la taille du transversal minimum (i. e. de la couverture par sommets minimum) est égale à la taille du couplage maximum. La version pondérée du théorème est appelée théorème de Kőnig-. Un couplage d'un graphe G est un sous-ensemble d'arêtes de G deux-à-deux non adjacentes ; un sommet est couplé s'il est extrémité d'une arête du couplage.
Close-packing of equal spheresIn geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Ultraconnected spaceIn mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint. Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersection. Hence, no T1 space with more than one point is ultraconnected. Every ultraconnected space is path-connected (but not necessarily arc connected). If and are two points of and is a point in the intersection , the function defined by if , and if , is a continuous path between and .
Ensembles disjointsvignette|Trois ensembles disjoints En mathématiques, deux ensembles sont dits disjoints s'ils n'ont pas d'éléments en commun. Par exemple, et sont deux ensembles disjoints. De manière formelle, deux ensembles A et B sont disjoints si leur intersection est l'ensemble vide, c'est-à-dire si (Dans le cas contraire, on dit que A et B « se rencontrent ».) Cette définition s'étend à une famille d'ensembles. Les ensembles d'une famille sont dits disjoints deux à deux ou mutuellement disjoints si deux ensembles quelconques de cette famille sont disjoints.
Particular point topologyIn mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is the particular point topology on X. There are a variety of cases that are individually named: If X has two points, the particular point topology on X is the Sierpiński space. If X is finite (with at least 3 points), the topology on X is called the finite particular point topology.