Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Biconnected componentIn graph theory, a biconnected component (sometimes known as a 2-connected component) is a maximal biconnected subgraph. Any connected graph decomposes into a tree of biconnected components called the block-cut tree of the graph. The blocks are attached to each other at shared vertices called cut vertices or separating vertices or articulation points. Specifically, a cut vertex is any vertex whose removal increases the number of connected components.
Family of setsIn set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. A family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of .
Ensemble flouLa théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Propriété topologiqueEn topologie et dans les domaines connexes des mathématiques, une propriété topologique (ou invariant topologique) est une propriété sur un espace topologique qui reste invariant sous l'application d'homéomorphismes. C'est-à-dire que chaque fois qu'un espace topologique X possède cette propriété, chaque espace homéomorphe à X possède également cette propriété. De manière informelle, une propriété topologique est une propriété qui peut entièrement être exprimée à l'aide d'ensemble ouverts.
Théorie des ensembles approximatifsThéorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).
Doubly connected edge listThe doubly connected edge list (DCEL), also known as half-edge data structure, is a data structure to represent an embedding of a planar graph in the plane, and polytopes in 3D. This data structure provides efficient manipulation of the topological information associated with the objects in question (vertices, edges, faces). It is used in many algorithms of computational geometry to handle polygonal subdivisions of the plane, commonly called planar straight-line graphs (PSLG).
Circle packing theoremThe circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent.
Algèbre des parties d'un ensembleEn théorie des ensembles, l'ensemble des parties d'un ensemble, muni des opérations d'intersection, de réunion, et de passage au complémentaire, possède une structure d'algèbre de Boole. D'autres opérations s'en déduisent, comme la différence ensembliste et la différence symétrique. L'algèbre des parties d'un ensemble étudie l'arithmétique de ces opérations (voir l'article « Opération ensembliste » pour des opérations qui ne laissent pas stable l'ensemble des parties d'un ensemble).