Invariant de grapheEn théorie des graphes, un invariant de graphe est une quantité qui n'est pas modifiée par isomorphisme de graphes. Un invariant de graphe ne dépend donc que de la structure abstraite et pas des particularités de la représentation comme l'étiquetage ou le tracé. De nombreux invariants sont conservés par certains préordres ou ordres partiels naturels sur les graphes : Une propriété est monotone si elle est héritée par les sous-graphes. Le caractère biparti, sans triangle, ou planaire sont des exemples de propriétés monotones.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Base de données orientée grapheUne base de données orientée graphe est une base de données orientée objet utilisant la théorie des graphes, donc avec des nœuds et des arcs, permettant de représenter et stocker les données. Par définition, une base de données orientée graphe correspond à un système de stockage capable de fournir une adjacence entre éléments voisins : chaque voisin d'une entité est accessible grâce à un pointeur physique. C'est une base de données orientée objet adaptée à l'exploitation des structures de données de type graphe ou dérivée, comme des arbres.
Intelligence artificielle générativeL'intelligence artificielle générative ou IA générative (ou GenAI) est un type de système d'intelligence artificielle (IA) capable de générer du texte, des images ou d'autres médias en réponse à des invites (ou "prompts"). Les modèles génératifs apprennent les modèles et la structure des données d'entrée, puis génèrent un nouveau contenu similaire aux données d'apprentissage mais avec un certain degré de nouveauté (plutôt que de simplement classer ou prédire les données).
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Graphe orienté acycliqueEn théorie des graphes, un graphe orienté acyclique (en anglais directed acyclic graph ou DAG), est un graphe orienté qui ne possède pas de circuit. Un tel graphe peut être vu comme une hiérarchie. Un graphe orienté acyclique est un graphe orienté qui ne possède pas de circuit. On peut toujours trouver un sous-graphe couvrant d’un graphe orienté acyclique qui soit un arbre (resp. une forêt). Dans un graphe orienté acyclique, la relation d'accessibilité R(u, v) définie par « il existe un chemin de u à v » est une relation d'ordre partielle.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Structure de donnéesEn informatique, une structure de données est une manière d'organiser les données pour les traiter plus facilement. Une structure de données est une mise en œuvre concrète d'un type abstrait. Pour prendre un exemple de la vie quotidienne, on peut présenter des numéros de téléphone par département, par nom, par profession (comme les Pages jaunes), par numéro téléphonique (comme les annuaires destinés au télémarketing), par rue et/ou une combinaison quelconque de ces classements.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.