Bounded expansionIn graph theory, a family of graphs is said to have bounded expansion if all of its shallow minors are sparse graphs. Many natural families of sparse graphs have bounded expansion. A closely related but stronger property, polynomial expansion, is equivalent to the existence of separator theorems for these families. Families with these properties have efficient algorithms for problems including the subgraph isomorphism problem and model checking for the first order theory of graphs.
Katz centralityIn graph theory, the Katz centrality or alpha centrality of a node is a measure of centrality in a network. It was introduced by Leo Katz in 1953 and is used to measure the relative degree of influence of an actor (or node) within a social network. Unlike typical centrality measures which consider only the shortest path (the geodesic) between a pair of actors, Katz centrality measures influence by taking into account the total number of walks between a pair of actors. It is similar to Google's PageRank and to the eigenvector centrality.
InternetworkingInternetworking is the practice of interconnecting multiple computer networks, such that any pair of hosts in the connected networks can exchange messages irrespective of their hardware-level networking technology. The resulting system of interconnected networks are called an internetwork, or simply an internet. The most notable example of internetworking is the Internet, a network of networks based on many underlying hardware technologies. The Internet is defined by a unified global addressing system, packet format, and routing methods provided by the Internet Protocol.
Fougère de Barnsleyvignette| Une fougère de Barnsley tracée avec VisSim. La fougère de Barnsley est une fractale nommée d'après le mathématicien Michael Barnsley qui l'a décrite pour la première fois dans son livre Fractals Everywhere. La fougère de Barnsley est l'attracteur d'une famille de quatre applications affines. La formule pour une application affine est la suivante : Dans le tableau, les colonnes "a" à "f" sont les coefficients de l'équation et "p" représente le facteur de probabilité.
Flocon de KochLe flocon de Koch () est l'une des premières courbes fractales à avoir été décrites, bien avant l'invention du terme « fractal(e) » par Benoît Mandelbrot. Elle a été inventée en 1904 par le mathématicien suédois Helge von Koch. thumb|Les 4 premières étapes de la construction. thumb|Les 6 premières courbes successives en animation. On peut la créer à partir d'un segment de droite, en modifiant récursivement chaque segment de droite de la façon suivante : On divise le segment de droite en trois segments de longueurs égales.
Conjecture faible de GoldbachEn théorie des nombres, la conjecture faible de Goldbach, aussi connue comme la conjecture impaire de Goldbach ou le problème des trois nombres premiers, affirme que : tout nombre impair supérieur ou égal à 9 est somme de trois nombres premiers impairs. (Un nombre premier peut être utilisé plus d'une fois dans la même somme). Cette conjecture est qualifiée de « faible » car la conjecture forte de Goldbach concernant les sommes de deux nombres premiers, si elle était démontrée, établirait la conjecture faible de Goldbach.
Filter (set theory)In mathematics, a filter on a set is a family of subsets such that: and if and , then If , and , then A filter on a set may be thought of as representing a "collection of large subsets", one intuitive example being the neighborhood filter. Filters appear in order theory, model theory, and set theory, but can also be found in topology, from which they originate. The dual notion of a filter is an ideal.
Fonction de WeierstrassLa fonction de Weierstrass, aussi appelée fonction de Weierstrass-Hardy, fut en 1872 le premier exemple publié d'une fonction réelle d'une variable réelle qui est continue partout, mais dérivable nulle part. On le doit à Karl Weierstrass et Leopold Kronecker ; les hypothèses ont été améliorées par G. H. Hardy.vignette|Évolution de la courbe de la fonction de Weierstrass lors d'une augmentation linéaire de la valeur de b de 0,1 à 5, pour a fixé égal à 0,5. la non-dérivabilité démarre à b = 2.
Eventually (mathematics)In the mathematical areas of number theory and analysis, an infinite sequence or a function is said to eventually have a certain property, if it doesn't have the said property across all its ordered instances, but will after some instances have passed. The use of the term "eventually" can be often rephrased as "for sufficiently large numbers", and can be also extended to the class of properties that apply to elements of any ordered set (such as sequences and subsets of ).