SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Spectroscopie laser ultrarapideLa spectroscopie laser ultrarapide est une technique spectroscopique qui utilise des lasers à impulsions ultracourtes pour l'étude de la dynamique sur des échelles de temps extrêmement courtes, de l'attoseconde (10−18 s) à la nanoseconde (10−9 s). Différentes méthodes sont utilisées pour examiner la dynamique des porteurs de charge, des atomes et des molécules. De nombreuses procédures différentes ont été développées pour différentes échelles de temps et différentes plages d'énergie des photons ; quelques méthodes courantes sont énumérées ci-dessous.
Spectrométrie photoélectronique Xvignette|upright=1.4|Machine XPS avec un analyseur de masse (A), des lentilles électromagnétiques (B), une chambre d'ultra-vide (C), une source de rayon X (D) et une pompe à vide (E) La spectrométrie photoélectronique X, ou spectrométrie de photoélectrons induits par rayons X (en anglais, X-Ray photoelectron spectrometry : XPS) est une méthode de spectrométrie photoélectronique qui implique la mesure des spectres de photoélectrons induits par des photons de rayon X.
SupercontinuumUn supercontinuum est un phénomène d'optique non linéaire qui correspond à un élargissement de spectre très prononcé à partir d'une onde électromagnétique. Typiquement, on peut créer un supercontinuum en dirigeant un faisceau laser sur un matériau non linéaire : les effets non linéaires élargissent le spectre du faisceau de départ au cours de sa traversée dans le matériau. Les premières générations de supercontinuum ont eu lieu en 1970 dans des matériaux massifs, à l’aide de lasers impulsionnels.
Spectroscopie rotationnelle-vibrationnelleLa spectroscopie rotationnelle-vibrationnelle est une branche de la spectroscopie moléculaire à laquelle est observée le couplage rovibrationnel, ou l'excitation à la fois des phénomènes de vibration et de rotation au sein d'un objet chimique (une molécule, par exemple). Il est à distinguer du couplage rovibronique qui implique une modification simultanée des états électroniques, vibrationnels et rotationnels. Ce phénomène physique est exploité pour la caractérisation spectroscopique.
Spectroscopie par transformée de FourierLa spectroscopie par transformée de Fourier est une technique de mesure par laquelle les spectres sont collectés sur la base de mesures de la cohérence d'une source radiative, utilisant le domaine temporel ou le domaine spatial des rayonnements électromagnétiques ou autre. Elle peut être appliquée à plusieurs types de spectroscopie dont la spectroscopie optique, la spectroscopie infrarouge (FTIR, FT-NIRS), la résonance magnétique nucléaire (RMN) et l'imagerie spectroscopique à résonance magnétique (MRSI), la spectrométrie de masse et la spectroscopie par résonance paramagnétique électronique.
Spectroscopie photoélectronique résolue en anglevignette|Dispositif expérimental de spectroscopie photoélectronique résolue en angle|alt=|300x300px La spectroscopie photoélectronique résolue en angle (ARPES), est une technique expérimentale directe permettant l'observation de la distribution des électrons (plus précisément, la densité des excitations électroniques) dans l'espace réciproque des solides. Cette technique est une spécialisation de la spectroscopie de photoémission ordinaire. L'étude de la photoémission des électrons contenus dans un échantillon est habituellement réalisée en illuminant avec des rayons X doux.
Spectroscopie vibrationnelleVibronic spectroscopy is a branch of molecular spectroscopy concerned with vibronic transitions: the simultaneous changes in electronic and vibrational energy levels of a molecule due to the absorption or emission of a photon of the appropriate energy. In the gas phase, vibronic transitions are accompanied by changes in rotational energy also. Vibronic spectra of diatomic molecules have been analysed in detail; emission spectra are more complicated than absorption spectra.
Effet photoélectriquealt=|vignette|Un schéma montrant l'émission d'électrons depuis une plaque métallique. L'émission de chaque électron (particules rouges) requiert une quantité minimale d'énergie, laquelle est apportée par un photon (ondulations bleues). En physique, l'effet photoélectrique (EPE) désigne en premier lieu l'émission d'électrons par un matériau sous l'action de la lumière. Par extension, il regroupe l'ensemble des phénomènes électriques dans un matériau sous l'effet de la lumière.
Phase (thermodynamique)thumb|right|Un système composé d'eau et d'huile, à l'équilibre, est composé de deux phases distinctes (biphasique). En thermodynamique, on utilise la notion de phase pour distinguer les différents états possibles d'un système. Selon le contexte et les auteurs, le mot est utilisé pour désigner plusieurs choses, parfois de natures différentes, mais étroitement liées. Si un système thermodynamique est entièrement homogène, physiquement et chimiquement, on dit qu'il constitue une seule phase.