Bending momentIn solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported (free to rotate and therefore lacking bending moments) at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads.
Moment quadratiqueLe moment quadratique est une grandeur qui caractérise la géométrie d'une section et se définit par rapport à un axe ou un point. Il s'exprime dans le Système international en m (mètre à la puissance 4). Le moment quadratique est utilisé en résistance des matériaux, il est indispensable pour calculer la résistance et la déformation des poutres sollicitées en torsion () et en flexion ( et ). En effet, la résistance d'une section sollicitée selon un axe donné varie avec son moment quadratique selon cet axe.
Moment d'inertieLe moment d'inertie d'un système physique est une grandeur qui caractérise son inertie vis-à-vis des mouvements de rotation, comme sa masse caractérise son inertie vis-à-vis des mouvements de translation. Il dépend de la valeur et de la répartition des masses au sein du système et a pour dimension (produit d'une masse par le carré d'une longueur) ; il s'exprime donc en dans le Système international d'unités.
Mouvement de rotationLa rotation ou mouvement de rotation est l'un des deux mouvements simples fondamentaux des solides, avec le mouvement rectiligne. En génie mécanique, il correspond au mouvement d'une pièce en liaison pivot par rapport à une autre. La notion de mouvement circulaire est une notion de cinématique du point : on décrit la position d'un point dans le plan. La rotation est une notion de cinématique du solide : on décrit l'orientation d'un solide dans l'espace. L'étude du mouvement de rotation est la base de la méthode du centre instantané de rotation (CIR).
Flexion (matériau)En physique (mécanique), la flexion est la déformation d'un objet sous l'action d'une charge. Elle se traduit par une courbure. Dans le cas d'une poutre, elle tend à rapprocher ses deux extrémités. Dans le cas d'une plaque, elle tend à rapprocher deux points diamétralement opposés sous l'action. L'essai de flexion d'une poutre est un essai mécanique utilisé pour tester la résistance en flexion. On utilise la flexion dite « trois points » et la flexion dite « quatre points ».
Moment d'une forceLe moment d'une force par rapport à un point donné est une grandeur physique vectorielle traduisant l'aptitude de cette force à faire tourner un système mécanique autour de ce point, souvent appelé pivot. Il s'exprime habituellement en (newtons mètres) par radian, et peut l'être de manière équivalente en joules par radian. Le moment d'un ensemble de forces, et notamment d'un couple, est la somme (géométrique) des moments de ces forces.
Dynamique de rotationLa rotation d'un système est un cas particulier de mouvement important notamment de par ses applications industrielles (machines tournantes) mais aussi sur un plan plus fondamental pour la dynamique dans un référentiel tournant, dont le cas le plus important est donné par la dynamique terrestre. Dans un système matériel, d'après la loi des actions mutuelles (autrefois action et réaction) de Newton (cf lois du mouvement de Newton, énoncées en 1687), le torseur des forces intérieures au système est nul.
Diagramme des efforts intérieursEn théorie des poutres, les diagrammes des efforts intérieurs désignent le tracé des efforts subis par la poutre en fonction de la position le long de cette dernière. Les principaux diagrammes des efforts intérieurs sont ceux de l'effort tranchant (V) et du moment de flexion (M). On parle alors de diagrammes V-M. Les diagrammes V-M sont généralement tracés l'un sous l'autre directement sous la poutre.
Moment d'un vecteurLe moment d'un vecteur peut se définir par rapport à un point ou par rapport à un axe orienté. Le moment par rapport à un point est un vecteur, le moment par rapport à un axe est un scalaire. Les moments d'un vecteur vrai (ou vecteur polaire) sont des pseudovecteurs ou des pseudoscalaires, ceux d'un pseudovecteur sont des vecteurs vrais ou des scalaires vrais.
Moment cinétiqueEn mécanique classique, le moment cinétique (ou moment angulaire par anglicisme) d'un point matériel M par rapport à un point O est le moment de la quantité de mouvement par rapport au point O, c'est-à-dire le produit vectoriel : Le moment cinétique d'un système matériel est la somme des moments cinétiques (par rapport au même point O) des points matériels constituant le système : Cette grandeur, considérée dans un référentiel galiléen, dépend du choix de l'origine O, par suite, il n'est pas possible de com