Le moment d'une force par rapport à un point donné est une grandeur physique vectorielle traduisant l'aptitude de cette force à faire tourner un système mécanique autour de ce point, souvent appelé pivot. Il s'exprime habituellement en (newtons mètres) par radian, et peut l'être de manière équivalente en joules par radian. Le moment d'un ensemble de forces, et notamment d'un couple, est la somme (géométrique) des moments de ces forces. La projection du moment (d'une force par rapport à un point) sur un axe Δ (orienté) contenant le point s'appelle moment de la force par rapport à l'axe Δ : c'est une grandeur scalaire algébrique exprimée dans la même unité, et traduisant de même la faculté de la force appliquée à faire tourner le système mécanique autour de l'axe Δ, le signe du moment par rapport à l'axe traduisant le sens de la rotation par rapport à l'orientation choisie de l'axe. vignette|Basculera, basculera pas ? Le concept de moment d'une force par rapport à un point, se distinguant de la force appliquée en un point, remonte dans sa formulation à l'étude d'Archimède sur les leviers. En mécanique statique, c'est l'étude de l'équilibre des moments qui permet de prévoir l'équilibre des bras d'une balance ou l'effet de levier d'une articulation. En dynamique du solide, c'est le déséquilibre de ces mêmes moments qui va mettre en rotation le corps qui y est soumis. Pour déséquilibrer une planche en équilibre au bord d'un muret, on peut poser une charge sur la partie en porte-à-faux, au-dessus du vide. La capacité de cette charge à faire basculer la planche n'est pas la même suivant qu'elle est posée près du muret ou au bout de la planche. De même on peut, au même endroit, placer une charge plus lourde et constater une différence de basculement. Le « pouvoir de basculement » dépend donc de l'intensité de la force, mais également de la position relative du point d'application de la force, et du point de rotation réel ou virtuel considéré.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (30)
EE-382: Electrical machines (for ME)
L'objectif de ce cours est d'acquérir les connaissances de base liées aux machines électriques (conversion électromécanique). Le cours porte sur le circuit magnétique, le transformateur, les machines
ME-202: Mechanical systems
Ce cours vise à approfondir la compréhension des lois de fonctionnement de plusieurs principes mécaniques majeurs et largement utilisés en construction de machines, en vue d'être capable d'en faire le
MICRO-314: Actuators and Electromagnetic systems II
Les étudiants seront capables de modéliser, de simuler et de mesurer des actionneurs électromagnétiques et des moteurs électriques.
Afficher plus
Séances de cours associées (198)
Statique: Forces et Moments
Explore la statique, en se concentrant sur les conditions d'équilibre, les couples de force et les principes de travail virtuels.
Momentum angulaire et loi gravitationnelle
Explore les équations de mouvement gravitationnelle, la conservation de l'énergie, les trous noirs et la cosmologie.
Introduction à la physique du plasma
Introduit les bases de la physique du plasma, couvrant le comportement collectif, la longueur de Debye, et les conditions plasmatiques.
Afficher plus
Publications associées (104)

3D printed large amplitude torsional microactuators powered by ultrasound

Mahmut Selman Sakar, Mehdi Ali Gadiri, Junsun Hwang, Amit Yedidia Dolev

Here, we introduce a design, fabrication, and control methodology for large amplitude torsional microactuators powered by ultrasound. The microactuators are 3D printed from two polymers with drastically different elastic moduli as a monolithic compliant me ...
2024

Permanently magnetized elastomer rotating actuator using traveling waves

Herbert Shea

We report a soft actuator that generates continuous rotation of an object placed on it by electromagnetically exciting circular travelling waves in a soft disk. The disk, that serves as the stator, is made of a stretchable composite consisting of segments ...
Iop Publishing Ltd2024

Digital-Image-Correlation for Simulating Cyclic Local Buckling in Steel Beams

Dimitrios Lignos, Albano António De Abreu E Presa De Castro E Sousa, Selimcan Ozden

Nonlinear continuum finite element (CFE) analyses rely on accurate multiaxial constitutive law formulations along with reliable imperfection patterns for simulating nonlinear geometric instabilities in steel members under mechanical loading. Validations of ...
Wiley2023
Afficher plus
Concepts associés (41)
Travail d'une force
Le travail d'une force est l'énergie fournie par cette force lorsque son point d'application se déplace (l'objet subissant la force se déplace ou se déforme). Il est responsable de la variation de l'énergie cinétique du système qui subit cette force. Si par exemple on pousse une bicyclette, le travail de la poussée est l'énergie produite par cette poussée. Cette notion avec ce nom fut introduite par Gaspard-Gustave Coriolis. Le travail est exprimé en joules (J) dans le Système international.
Statique (mécanique)
La statique, ou mécanique statique, est la branche de la physique qui étudie les systèmes mécaniques en équilibre dans un repère galiléen. Un équilibre est un mouvement nul. Des lois du mouvement de Newton, on peut déduire, de manière générale, l'énoncé suivant : La réciproque n'est pas vraie, un système mécanique soumis à un ensemble d'efforts extérieurs d'effet global nul n'est pas forcément en équilibre.
Centre d'inertie
Le centre d'inertie d'un objet, ou centre de masse, est le point de l'espace où l'on applique les effets d'inertie, c'est-à-dire le vecteur variation de quantité de mouvement . Si la masse du système est constante, ce que nous supposerons pour simplifier par la suite, alors , étant l'accélération. C'est aussi le point où l'on applique le vecteur force d'inertie résultant de l'accélération d'entraînement dans le cas d'un référentiel non galiléen.
Afficher plus
MOOCs associés (11)
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique II
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.