Troisième principe de la thermodynamiquevignette|Walther Hermann Nernst. Le troisième principe de la thermodynamique, appelé aussi principe de Nernst (1906), énonce que : La valeur de l'entropie de tout corps pur dans l'état de cristal parfait est nulle à la température de . Cela permet d'avoir une valeur déterminée de l'entropie (et non pas « à une constante additive près »). Ce principe est irréductiblement lié à l'indiscernabilité quantique des particules identiques. Il a été énoncé par Walther Nernst en 1906, puis Max Planck en 1912.
QuotientEn mathématiques, un quotient est le résultat d'une division. Le quotient existe ou pas selon l'ensemble de nombres considéré. Dans les entiers naturels, le quotient de par n'existe que si est un multiple de . On parle alors de quotient euclidien, puisqu'il résulte d'une division euclidienne. Le mot quotient s'emploie parfois pour fraction.
Zéro absoluLe zéro absolu est la température la plus basse qui puisse exister. Il correspond à la limite basse de l'échelle de température thermodynamique, soit l'état dans lequel l'enthalpie et l'entropie d'un gaz parfait atteint sa valeur minimale, notée 0. Cette température théorique est déterminée en extrapolant la loi des gaz parfaits : selon un accord international, la valeur du zéro absolu est fixée à (Celsius) ou (Fahrenheit). Par définition, les échelles Kelvin et Rankine prennent le zéro absolu comme valeur 0.
Espace métriqueEn mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
EnthalpieEn physique, la variable enthalpie est une quantité reliée à l'énergie d'un système thermodynamique. Elle est notée . Elle comprend l'énergie interne du système (notée ), à laquelle est ajouté le produit de la pression (notée ) par le volume (noté ) : . L'enthalpie est un potentiel thermodynamique qui synthétise en une seule fonction l'énergie interne du système (liée à sa température et à sa quantité de matière) et le travail de frontière (lié à sa pression) requis pour occuper son volume.
Aix-en-ProvenceAix-en-Provence (en provençal : Ais) est la capitale historique de la Provence. C'est aujourd'hui une commune française du Sud-Est de la France, dans le département des Bouches-du-Rhône, dont elle est sous-préfecture, en région Provence-Alpes-Côte d'Azur. Elle forme avec le pays d'Aix au sein de la Métropole Aix-Marseille Provence. Les habitants d'Aix s'appellent les Aixois en français (en provençal : lei sestian). Fondée en sous le nom d'Aquae Sextiae par la garnison romaine de Caius Sextius Calvinus, Aix devient par la suite la capitale du comté de Provence.
Anneau quotientEn mathématiques, un anneau quotient est un anneau qu'on construit sur l'ensemble quotient d'un anneau par un de ses idéaux bilatères. Soit A un anneau. L'addition et la multiplication de A sont compatibles avec une relation d'équivalence sur A si (et seulement si) celle-ci est de la forme : x ~ y ⇔ x – y ∈ I, pour un certain idéal bilatère I de A. On peut alors munir l'ensemble quotient A/I de l'addition et de la multiplication quotients de celles de A : Ceci munit A/I d'une structure d'anneau, appelé l'anneau quotient de A par I (son groupe additif est le groupe quotient de (A, +) par I).
Topologie quotientEn mathématiques, la topologie quotient consiste intuitivement à créer une topologie en collant certains points d'un espace donné sur d'autres, par le biais d'une relation d'équivalence bien choisie. Cela est souvent fait dans le but de construire de nouveaux espaces à partir d'anciens. On parle alors d'espace topologique quotient. Beaucoup d'espaces intéressants, le cercle, les tores, le ruban de Möbius, les espaces projectifs sont définis comme des quotients.
Mesure de similaritéEn mathématiques et en informatique théorique, une mesure de similarité, plus exactement une mesure de distance entre mots, est une façon de représenter par un nombre la différence entre deux mots, ou plus généralement deux chaînes de caractères. Cela permet de comparer des mots ou chaines de façon simple et pratique. C'est donc une forme de distance mathématique et de métrique pour les chaînes de caractères.
Groupe quotientDans l'étude des groupes, le quotient d'un groupe est une opération classique permettant la construction de nouveaux groupes à partir d'anciens. À partir d'un groupe G et d'un sous-groupe H de G, on peut définir une loi de groupe sur l'ensemble G/H des classes de G suivant H, à condition que le sous-groupe H soit normal, c'est-à-dire que les classes à droite soient égales aux classes à gauche (gH = Hg). Étant donné un élément g de G, nous définissons la classe à gauche gH = { gh | h ∈ H }.