Théorème de CayleyEn théorie des groupes, le théorème de Cayley est un résultat élémentaire établissant que tout groupe se réalise comme groupe de permutations, c'est-à-dire comme sous-groupe d'un groupe symétrique : Si G est d'ordre n, le groupe S dans lequel il est plongé est d'ordre n!. Le théorème se reformule en disant que tout groupe agit fidèlement sur lui-même. L'action que l'on construit est en fait même simplement transitive. Ce théorème est utilisé en théorie des représentations de groupes.
Groupe d'espaceLe groupe d'espace d'un cristal est constitué par l'ensemble des symétries d'une structure cristalline, c'est-à-dire l'ensemble des isométries affines laissant la structure invariante. Il s'agit d'un groupe au sens mathématique du terme. Tout groupe d'espace résulte de la combinaison d'un réseau de Bravais et d'un groupe ponctuel de symétrie : toute symétrie de la structure résulte du produit d'une translation du réseau et d'une transformation du groupe ponctuel. La notation de Hermann-Mauguin est utilisée pour représenter un groupe d'espace.
Théorème fondamental de la théorie de GaloisEn mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d'une extension finie de corps et leurs groupes de Galois, dès lors que l'extension est galoisienne, c’est-à-dire séparable et normale. Soient L une extension galoisienne finie de K et G son groupe de Galois. Pour tout sous-groupe H de G, on note LH le sous-corps de L constitué des éléments fixés par chaque élément de H.
G2 (mathématiques)En mathématiques, G2 est le plus petit des groupes de Lie complexes de type exceptionnel. Son algèbre de Lie est notée . G2 est de rang 2 et de dimension 14. Sa forme compacte est simplement connexe, et sa forme déployée a un groupe fondamental d'ordre 2. Son groupe d'automorphismes est le groupe trivial. Sa représentation fondamentale est de dimension 7. La forme compacte de G2 peut être décrite comme le groupe d'automorphismes de l'algèbre octonionique. (1,−1,0),(−1,1,0) (1,0,−1),(−1,0,1) (0,1,−1),(0,−1,
Quaternions de HurwitzLes quaternions de Hurwitz portent ce nom en l'honneur du mathématicien allemand Adolf Hurwitz. Soit A un anneau. On definit l'algèbre de quaternions H(A) comme l'algèbre A[H] du groupe H des quaternions. Plus explicitement, c'est le A-module libre engendré par 1, i, j et k, muni de la structure d'algèbre : 1 élément neutre pour la multiplication, et les identités : Soit , l'algèbre des quaternions sur l'anneau Z des entiers relatifs.
Inégalité arithmético-géométriquethumb|right|Preuve sans mots de l'inégalité arithmético-géométrique en deux dimensions : PR est un diamètre d'un cercle de centre O ; son rayon AO a donc pour longueur la moyenne arithmétique de a et b. Par le théorème de la moyenne géométrique, on trouve aussi que la hauteur GQ a pour longueur la moyenne géométrique de a et b. On a donc bien pour tous a:b, AO ≥ GQ. En mathématiques, l'inégalité arithmético-géométrique (IAG) établit un lien entre la moyenne arithmétique et la moyenne géométrique.
Espace de FockL'espace de Fock est une construction algébrique utilisée en mécanique quantique pour construire l'espace des états quantiques d'un nombre variable ou inconnu de particules identiques à partir d'une seule particule de l'espace de Hilbert H. Il porte le nom de Vladimir A. Fock qui l'a présenté pour la première fois dans son article de 1932 "Konfigurationsraum und zweite Quantelung", traduisible par "espace de configuration et deuxième quantification.